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ABSTRACT
Some current and next generation security solutions employ ma-
chine learning and related technologies. Due to the nature of these
applications, correct use of machine learning can be critical. One
area that is of particular interest in this regard is the use of appro-
priate data for training and evaluation. In this work, we investigate
different characteristics of datasets for security applications and
propose a number of qualitative and quantitative metrics which can
be evaluated with limited domain knowledge. We illustrate the need
for such metrics by analyzing a number of datasets for anomaly and
intrusion detection in automotive systems, covering both internal
vehicle network and vehicle-to-vehicle (V2V) communication. We
demonstrate how the proposed metrics can be used to learn the
strengths and weaknesses in these datasets.
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1 INTRODUCTION
A modern vehicle is a complex electrical system with a large num-
ber of intelligent nodes. These nodes communicate over multiple
in-vehicle networks and through various interfaces to the outside
world. For example, a vehicle may contain 100 to 200 electronic
control units (ECUs), communicating across multiple network seg-
ments using Ethernet, FlexRay, CAN and wireless technologies,
such as LTE, Bluetooth, Wi-Fi, and additional proprietary technolo-
gies. Figure 1 shows an example of an in-vehicle network (IVN)
divided into the different network domains.

This growing complexity in conjunction with the introduction
of connected and self-driving vehicles has put automotive security
in focus. Strandberg et al. [27] provide a summary of 52 published
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Figure 1: Example of internal network segments in a modern
vehicle.

attacks against vehicles, among which 37 are classified as high
or critical attacks. Furthermore, taking cooperative driving and
vehicle-to-everything (V2X) communication into account, multiple
new interfaces must also be protected and secured.

A significant problem with in-vehicle security is that some tech-
nologies were not designed with security in mind and offer minimal
resistance once remotely or physically reachable to an attacker. For
example, the CAN bus technology (see Figure 2) provides no secu-
rity mechanisms and with a payload size of only 8 bytes adding
one is next to impossible. New technologies (such as CAN-FD [46])
have been proposed to address shortcomings of CAN, however,
due to technical or economical reasons it may not be possible to
completely abandon CAN in near future.

Modern vehicles may also communicate with other vehicles
(V2V communication), or to other entities (V2I communication)
such as road-side units (RSUs). The communication between the ve-
hicles themselves and to RSUs is established by forming a Vehicular
Ad-Hoc Network (VANET). The properties of the communication
between these entities bring different security challenges. For in-
stance, security solutions for VANETs need to be able to cope with
the ephemeral nature of VANETs where the vehicles are driving
with different speeds and directions and thus join and leave the
network constantly.

Automated monitoring systems, such as intrusion detection sys-
tems (IDS), have been proposed as a possible solution to the increas-
ing threats and in future their presence may even be a regulatory
requirement. Furthermore, the next generation of automotive IDSs
may utilize artificial intelligence - and in particular machine learn-
ing - for anomaly detection. Such solutions often require properly
curated datasets for training and evaluation. Past studies of IDS
datasets for general network security have shown that minor flaws
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in datasets can greatly weaken a security solution [53]. Hence it
is important that security researchers can analyze datasets with
respect to properties relevant to security.

In this work, we investigate possible dataset requirements for
security applications. We also analyze a number of commonly used
automotive datasets, and explore whether those are suitable for use
with automotive IDSs .
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Figure 2: CAN OSI layers.

1.1 Contributions and outline
The main contributions of this work are as follows:

• We propose a systematic way to evaluate intrusion detection
datasets for automotive systems.

• We evaluate a number of available automotive IDS datasets
with respect to our proposed method.

• We highlight areas that must be improved in future datasets.
The remainder of this paper is organized as follows: Security in

modern vehicles is discussed in Section 2, where we also discuss
previous and related work. A set of IDS dataset requirements are
proposed in Section 3, followed by analysis and discussion of defi-
ciencies in available datasets in Section 4. Finally, we conclude our
work with some observation and recommendations in Section 5.

2 AUTOMOTIVE SECURITY
Checkoway et al. [10] in 2011 and Miller and Valasek [41] in 2015
demonstrated how easily vehicles from that period could be compro-
mised. More recent work by Yan et al. [61] and others [54] indicate
that moderns vehicles are still insufficiently protected and security
needs to be considerably improved. To ensure a better and more
organized approach to security in road vehicles, ISO/SAE 21434
was introduced in 2021 to establish a common terminology and
define a security process for all stages of a vehicle’s life cycle. Fur-
thermore, the UNECE Regulation No. 155 was created to provide a
harmonized regulatory framework [1].

To develop a versatile security solution, a large array of attacks
need to be considered in automotive security. These include, for
instance, theft of the vehicle, causing physical harm to individu-
als, making unauthorized purchases using the vehicle’s or the real
owners’ credentials, unauthorized tracking, reduction of vehicle per-
formance, and the disruption of V2X communication. McCarthy et
al. [37] and Karahasanovic et al. [29] discuss different attacks as
well as the motivation driving such operations. Rosenstatter et

al. [47] further propose a framework guiding developers in design-
ing resilient systems capable of coping with this growing number
of attacks and recover to the desired state.

2.1 Threat model
As noted earlier, the goals and the motivations of threat agents may
vary greatly. Similarly, the incentives and the technical abilities of
different attackers may vary significantly. While one could attempt
to label the attackers (e.g. script kiddies, hackers, state actors) and
use that to deduce their competence and resources, that approach
may not be optimal for the analysis proposed in this work. We
will therefore instead only consider the technical capabilities of the
adversary against the vehicle, defined as the following:

• Read capability: Ability to observe the communication, e.g.,
eavesdropping.

• Write capability: Ability to inject malicious but otherwise
valid messages.

• Suppress capability: Ability to suppress valid messages in the
network.

• Replace capability: Ability to control another entity and its
communication.

• Direct access capability: Ability to physically access the com-
munication channel and operate it outside its specifications.

The reason for selecting these particular capabilities is to distin-
guish among the different ways attacks such as spoofing and denial
of service can be implemented. Notice that for IVN communication,
write and replace capabilities are similar to the idea of weakly and
strongly compromised ECUs introduced by Cho and Shin [12]. The
direct access capability assumes that the adversary has either com-
promised a specially privileged component (as demonstrated by
Sagong et al. [48]) or has added their own hardware to the network.
In the case of VANET, the wireless communication allows trivial
read and write and relatively easy suppress, but rules out direct
access.

Given the large number of attacks and attack variations, we
also group similar attacks based on their type. This can be done
according to the security attribute each attack violates, such as
Confidentiality, Integrity and Availability (CIA) [44]. For this work,
we chose to group attacks according to the Microsoft STRIDE threat
categories [40], which are well established in the automotive do-
main [26, 36, 51].

• Spoofing: Impersonation of something/someone, for example
sending manipulated brake signals.

• Tampering: Modification of data or code, for example manip-
ulating ECU firmware.

• Repudiation: Deniability of actions, for example deleting or
overwriting sensitive data to hinder or complicate forensics.

• Information disclosure: Unauthorized access to information,
for example extraction of sensitive vehicle data.

• Denial of Service: Refuse or reduce access to a service, for
example reduce vehicle performance by generating large
amounts of bogus traffic.

• Elevation of Privilege: Get unauthorized access, for example
by using an implementation flaw in the infotainment system.

For example, flooding and blackhole attacks are both different
implementations of Denial of Service.
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2.2 Intrusion detection systems
Automotive systems have a number of inherent security problems
that are challenging to overcome. Strandberg et al. [27] list a num-
ber of security concepts and patterns for improving security and
resilience in automotive systems. Alongside standard security prac-
tices, such as encryption and access control, the authors also pro-
pose monitoring systems for detecting unwanted behavior. In future
such security solutions may also be required by law. The UNECE
Regulation No. 155 on automotive cybersecurity states that vehicle
manufacturers shall implement measures to “detect and prevent
cyber-attacks”, and shall support monitoring “with regards to detect-
ing threats, vulnerabilities and cyber-attacks” [1].

To detect security threats, an IDS monitors events to detect
unwanted behavior in real-time or off-line. Two commonly used
types are host-based IDS (HIDS) which mainly monitor internal
system events (e.g., file access and system calls), and network-based
(NIDS) that monitor network traffic. The focus of this work is NIDSs,
although the discussion may also apply to HIDSs.

The two main IDS implementation paths are signature-based that
utilizes a knowledge database describing wanted/unwanted behav-
ior, and anomaly-based that observes deviations from a learned
normal behavior [4]. The latter has gained popularity due to the
advances in machine learning. Advantages of this approach in-
clude reduced need for expert knowledge (to construct a signature
database) and a theoretical possibility to detect new attacks.

A possible disadvantage of anomaly-based IDSs is the need for
high quality data used for training and evaluation. Previous re-
search has demonstrated that unless this data meets certain quality
requirements, the produced IDS will struggle to detect many real-
world security threats [39, 53]. This subject has been discussed in
length for general NIDSs, but until now has been somewhat ne-
glected in the automotive world. Our work aims to address this
issue by highlighting relevant dataset issues.

2.3 Datasets
The following terminology is used throughout this paper. A dataset
𝐷 is normally a collection of one or more tables where each row is
a data entry and columns represent variables. Consider for example
the Iris flower dataset [17], shown in Table 1.

This dataset may be used to find a suitable model 𝜃 : 𝑋 → 𝑌 , to
predict flower type Y based on the input measurements X. More
formally, 𝑥 = [𝑥1, · · · , 𝑥𝑛] ∈ 𝑋 = R𝑛 is a vector of 𝑛 features
(e.g., sepal length) the set of which we denote 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐷). In
a classification problem such as this, 𝑦 ∈ 𝑌 = {𝑐1, · · · , 𝑐𝑚} is a
discrete label (e.g. Iris setosa). Finally, we let 𝐷𝑐𝑖 to represent the
subset of 𝐷 with the label 𝑐𝑖 and |𝐷 | to be the size of 𝐷 .

A security dataset is usually a binary classification problem,
which in this work has the two labels A (attack) and B (benign).
Thus 𝐷𝐴 and 𝐷𝐵 would represent malicious and non-malicious
entries in the dataset, |𝐷𝐴 | and |𝐷𝐵 | would denote their respective
sizes, and so on.

For use in machine learning, a dataset should meet a number of
requirements. For example, the selected features must be relevant
to the task at hand and the number of different classes in the dataset
should be approximately equal. We will revisit this in Section 3.

Table 1: Extract from the Iris flower dataset.

X Y
Sepal length Sepal width Petal length Petal width Specie

5.1 3.5 1.4 0.2 Iris setosa
4.9 3.0 1.4 0.2 Iris setosa
6.2 3.4 5.4 2.3 Iris virginica
6.0 2.9 4.5 1.5 Iris versicolor

· · ·

The Iris flower dataset and many similar popular datasets model
static problems that do not change over time. Unfortunately, this
assumption is almost never true for security applications where an
intelligent attacker is able to improve and adapt. Hence, security
datasets must meet a different set of requirements that are some-
times contradictory to the ones used for normal datasets. We will
discuss these requirements in detail in the following sections.

2.4 Related work
The KDD CUP 99 dataset [22] is a pioneering network dataset pub-
lished by the MIT Lincoln Labs as part of the DARPA Intrusion
Detection Evaluation Program. This dataset was extracted from
multiple weeks of traffic in a network environment that suppos-
edly resembled a US Air Force LAN. While widely used in IDS
research, McHugh [39] noticed a number of shortcomings in this
dataset, including poor documentation and unrealistic network
traffic. Tavallaee et al. [53] noted that this dataset had not resulted
in significant improvement in real-world IDS solutions, which the
authors after careful statistical analysis attributed to multiple is-
sues with the data. These included disparities between captured
and expected LAN traffic, missing packets, redundant entries, and
attack data imbalance. Kenyon et al. [30] revisited this subject by
examining this and 26 other IDS datasets two decades after its pub-
lication. The authors conclude that many are either flawed, not fit
for the desired purpose or simply outdated.

To better generate synthetic attack data, Cordero et al. [13] inves-
tigated common defects in IDS datasets, which included the use of
impossible artificial anomalies, predictable patterns, and unrealistic
cleanness.

Quantitative analysis of datasets can be useful to detect certain
problems. Ho and Basu [23] proposed a number of computationally
cheap metrics for measuring dataset complexity. Xu et al. [60]
investigated the idea of usable information, 𝜈-information, as an
extension of Shannon’s information theory. The authors proposed
a mechanism for efficiently predicting this quantity in a machine
learning context. Ethayarajh et al. [15] used this to estimate the
difficulty of some natural language processing datasets whichwould
allow researchers to compare datasets and models and to study
feature contribution.

Multiple attempts have been made to improve CAN security
without significantly altering the protocol. For example, Nilsson et
al. [43] suggest using a 64-bit MAC for authentication and integrity
control. The proposed solution computes a MAC for every 4 frames,
which replaces the CRC for the next 4 frames. Groll and Ruland [19]
consider encrypted CAN communication, where all ECUs in a se-
curity domain share a symmetric key, with initial key distribution



CSCS ’22, December 8, 2022, Ingolstadt, Germany Arash Vahidi, Thomas Rosenstatter, and Nishat I Mowla

Table 2: Data readiness with weighted deficiencies [8].

Band Weight Deficiency

C

40 Parseability
25 Data storage
15 Decoding
10 Data formats
10 Disjoint datasets

B

20 Column types
30 Missing values
20 Inconsistent data entries
10 Duplicated records
20 Meaningful values

A

20 Interpretable values
20 Feature scaling
20 Outlier detection
30 Feature selection
10 Coverage gap

AA
40 Legal violations
40 Security risks
20 Bias detection

AAA - None

handled by a dedicated ECU. Khodari et al. [31] proposed verifying
ECU correctness by using attestation in a distributed fashion, where
an ECU may appraise multiple other ECUs, and vice versa.

Verma et al. [58] investigate a number of automotive IDS datasets
and note a number of problems including incorrect documentation
or labels and very noisy attacks that can be identified with very
simple methods. Swessi and Idoudi [52] provide a recent survey of
automotive security datasets. They evaluate each dataset based on
11 criteria and conclude with recommended datasets for in-vehicle
and inter-vehicle machine learning-based IDSs.

3 IDS DATASET REQUIREMENTS
The quality of the training dataset directly affects real-world IDS
performance, making dataset quality assurance a crucial require-
ment. This can become a complex and time consuming task, but
utilizing the concept of data readiness we are able to provide a
simple and systematic method to assess datasets.

Lawrence proposed the idea of data readiness levels [34] by plac-
ing data within one of three main bands: (C) dataset exists, (B)
data exists and is a faithful representation, and (A) correct data
exists and is appropriate for this task. To allow a generic quality as-
sessment without the need for domain experts, Castelijns et al. [8]
proposed the alternative definition presented in Table 2. Under
this new definitions the bands are constructed to allow analysis at
different stages of the project: (C) data is not yet read, (B) data is
not yet analyzed but minor errors have been addressed, (A) data
is ready for deeper analysis, (AA) use of data is considered. Based
on the weighted deficiencies shown in Table 2, each band is given a
score between 0 and 1. The appropriate band is then selected after
choosing a threshold (the authors suggested 0.85).

Table 3: Proposed data readiness for IDS applications.

Band Weight Deficiency

C

30 Dataset documentation
30 Objective
20 Parseability
20 Dataset age

B

40 Format correctness and consistency
20 Dataset size
20 Completeness
20 Label inclusion and correctness

A

20 Class balance
30 Attack documentation
20 Security coverage
30 Attack realism

AA

40 Dataset realism and diversity
20 Feature context and documentation
20 Difficulty
20 Transformation and anonymization

AAA - None

3.1 IDS data readiness
Unfortunately, the deficiencies proposed in Table 2 are not opti-
mal for intrusion detection and possibly many other security ap-
plications. For instance, removing outliers may remove the very
anomalies the IDS is meant to identify.

Fortunately, it is possible to use the dataset readiness concept
with other deficiencies and weights. Hence, we propose the alter-
native deficiencies shown in Table 3 for use with IDS datasets. We
chose the deficiencies and weights to highlight areas we found to
be problematic. In the remainder of this chapter we will discuss the
motivation behind this selection. Furthermore, in Chapter 4 we will
demonstrate how to quantify these deficiencies when examining
IDS datasets.

3.2 Dataset documentation
We consider documentation to be one of the most important parts
of a security dataset, and therefore propose three documentation
deficiencies:

(1) general documentation describing content and origin,
(2) description of the attacks in the dataset and how they were

executed/recorded, and
(3) description of the features (e.g., origin, meaning, range) and

their physical context (e.g., how vehicle speed, engine speed
and gear are related).

Motivation: Proper documentation is needed to assess if its con-
tent and creation methodology aligns with our requirements. Fur-
thermore, information about the included attacks is needed to judge
its contribution to an IDS. Finally, information about features and
their relations to each other and their surrounding may be needed
to allow explainability, or to create a context-aware IDS [59].
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3.3 Labels
Each entry in an IDS dataset may be given a label for identifying
whether that entry is benign or an attack: 𝑌 = {𝐵,𝐴}. This infor-
mation is usually needed for IDS training and should be included
in the dataset.

Motivation: While this information is often crucial for training,
many datasets lack labels or provide incomplete or incorrect labels.

3.4 Parseability, correctness and consistency
We simplify the numerous deficiencies in the original readiness
model to only three:

(1) data should be stored in an appropriate machine/human-
readable format (e.g., PCAP or CSV rather than SQL databases),

(2) all entries should be correctly formatted (e.g., no corrupt
entries), and

(3) use a single data format for all entries.
Motivation: In the original data readiness model many deficien-

cies were related to data representation and validity. The assump-
tion was that a good dataset should be in a format that can be used
by non-domain experts with minimal effort. Hence, the dataset
authors should handle tasks such as feature selection and data nor-
malization and provide the data in a format ready for immediate
use in a machine learning framework.

However, while studying public IDS implementations we ob-
served significant disagreement in feature selection and represen-
tation. Hence, we believe dataset authors should rather focus on
providing correct, complete, and unaltered data. Extracting and
transforming data to the desired format is then done by the IDS
developers. This should also make the dataset more future-proof as
more IDS designs and attack variations are discovered.

3.5 Age, size and objective
To ensure that the included data is large enough and somewhat up-
to-date we propose the size and age deficiencies. Another important
issue to consider is whether the dataset objective is compatible with
ours (e.g., IDS development).

Motivation: The threat landscape can change very quickly, and
a dataset with obsolete information is not very useful. While not
perfect, dataset age might be a useful indicator for this. It is also
important that the dataset contains enough data for training and
evaluation. An often used rule of thumb is that dataset size should be
at least an order of magnitude larger than the number of parameters
in the model.

Finally, it is important that the objective of the dataset aligns
with (but not necessarily identical to) ours. For example, the HCRL
Driving dataset (see Section 4) contains a large amount of benign
data and no cybersecurity issues. However, this may be quite useful
for validating IDS robustness and reducing false-positives under
different driving styles and road conditions.

3.6 Completeness, transformation and
anonymization

As already noted in Section 3.4, a security dataset should be complete
in the sense that no key features or entries have been discarded.
Similarly, data should not be irreversibly transformed (e.g., changing

timestamp granularity from milliseconds to seconds). This also
includes attempts to anonymize the data, although we understand
that this may be in conflict with privacy requirements.

Motivation: In the KDD99 dataset background traffic that was
initially considered inconsequential turned out to be important to
real-world IDS performance [39]. In addition, if an IDS observes
only a subset of the system events, an attacker may be able to craft
an attack invisible to the IDS and thereby avoid detection.

3.7 Dataset and attack realism
Dataset realism and diversity considers whether a dataset is a good
representation of the problem at hand. For example, a network
dataset may include unrealistic synthetic traffic, or ignore some
network protocols, or only capture data from some network nodes.
The included security attacks can also exhibit similar problems, thus
we consider attack realism as a separate deficiency. Furthermore,
attack diversity is examined as part of attack coverage.

Motivation: Kenyon et al. [30] recognize three ways to create
intrusion datasets: capturing live data from a real-world event,
generating synthetic data in a simulated environment, and a hybrid
approach with both real and synthetic data. The last two are more
likely to contain unrealistic data. To complicate matters, sometimes
benign and attack data use different methodologies. For example, it
is not uncommon to record live benign data from a vehicle and later
insert synthetic attacks into the dataset. Hence we consider general
dataset realism and attack realism as two separate deficiencies.

3.8 Security coverage
Since an IDS that only detects one type of attack is seldom useful,
a comprehensive dataset (or collection of datasets) should include
a wide variety of attacks. The security coverage deficiency captures
this by evaluating attack classes and implementations in the dataset.

Sharafaldin et al. [50] propose the metric attack diversity, which
is the number of attacks included in the dataset out of a catalog of
seven groups of attacks. As that catalog covers general computer
security issues (e.g., browser attacks), we instead propose attack
coverage as the number of different security threats covered in a
dataset. While not optimal, we use STRIDE for this task:

attack coverage =
|𝐴 ∩𝐶 |
|𝐶 | ,

where 𝐴 is the set of threats covered in the dataset and 𝐶 ⊆
{𝑆,𝑇 , 𝑅, 𝐼 , 𝐷, 𝐸} is the catalog of threats the IDS is meant to detect.

Note that a threat class such as spoofing may include a wide
variety of attacks, but it is not practical to cover every single attack
implementation in a dataset (specially as many are not even known
to us). Hence. we instead consider what the attacker theoretically
could do by considering the attacker capabilities covered in the
dataset:

capability coverage =
|𝐴𝐶 ∩𝐶𝐶 |

|𝐶𝐶 | ,

where 𝐴𝐶 is the set of included capabilities and 𝐶𝐶 ⊆ {𝑅𝑒𝑎𝑑,
𝑊𝑟𝑖𝑡𝑒, · · · } is the capability catalog. To capture both, we define
the security coverage deficiency as

security coverage =
attack coverage + capability coverage

2
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Motivation: Many datasets consider a very specific type of attack
or a very specific implementation of an attack, resulting in poor real-
world IDS performance. By understanding this deficiency we are
better positioned to understand how the IDS may perform against
attacks seen in the wild.

3.9 Dataset difficulty
The difficulty deficiency considers the hardness of the problem the
dataset captures. However, as this is not a trivial task, a simple
heuristic to approximate dataset complexity may be used instead.
For example, Ethayarajh et al. [15] evaluate difficulty of natural
language datasets under a given classifier by measuring a dataset’s
useful information [60]. For IDS datasets a simple heuristic such as
the volume of overlapping regions [23] (for calculating the intersect-
ing volume of attack and benign entries) may be sufficient to detect
some problems:

∏
𝑓 ∈𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝐷)

𝑀𝐼𝑁 (𝑚𝑎𝑥 (𝑓𝐴),𝑚𝑎𝑥 (𝑓𝐵) −𝑀𝐴𝑋 (𝑚𝑖𝑛(𝑓𝐴),𝑚𝑖𝑛(𝑓𝐵))
𝑀𝐴𝑋 (𝑚𝑎𝑥 (𝑓𝐴),𝑚𝑎𝑥 (𝑓𝐵) −𝑀𝐼𝑁 (𝑚𝑖𝑛(𝑓𝐴),𝑚𝑖𝑛(𝑓𝐵))

Motivation:McCoy et al. [38] noted that by only learning shallow
heuristics from training data, machine learning models could per-
form well on training data but fail in real-world. Similarly, Verma et
al. [58] observed this issue in many automotive IDS datasets due to
the clumsy way some attacks were implemented. Many such issues
may be detected when examining dataset difficulty.

3.10 Data balance
In machine learning it is normally preferred that all classes are of
roughly equal size [9]. Unfortunately, security datasets often con-
tain significantly more benign than malicious entries (i.e., |𝐷𝐵 | ≫
|𝐷𝐴 |). To highlight this problem we use the data balance deficiency:

data balance =

√︄
1 −

����2 |𝐷𝐴 |
|𝐷 | − 1

���� ,
where a 0/100 and a 50/50 split yield 0 and 1 respectively.
Motivation: While there exist techniques to somewhat improve

training and evaluation of imbalanced datasets (e.g., SMOTE [16]),
the importance of data balance is still something dataset and IDS
authors should consider. The real-world implication of dataset im-
balance in a security dataset is not always easy to measure and
may depend on other subjects 1. Therefore, we define a somewhat
forgiving method for quantifying this deficiency.

4 ANALYSIS OF AUTOMOTIVE IDS DATASETS
In the following we will analyze a number of available datasets in
light of the proposed data readiness deficiencies. To ensure a fair
assessment, we first formulated a simple method to quantify each
deficiency, which is presented in Table 4. We then split the datasets
into three overlapping sets such that each dataset was analyzed by
two out of the three authors. Note that Table 4 is only provided as

1For example, some datasets include a large benign component provided for a different
purpose. Dataset balance can also vary greatly depending on data representation. For
example, using each entry as a data point has most likely a different balance than
using a window of N entries.

an example and is based on what the authors judged as relevant
information for their particular application.

4.1 Examined datasets
For analysis we consider the datasets presented in Table 5, which
covers both in-vehicle and VANET/V2V. Most in-vehicle datasets
focus on CAN traffic, and are often recorded from the vehicle diag-
nostics port (OBD-II). The SIMPLE dataset [18] differs in this regard
as it contains bus voltage level measurements from an internal CAN
bus. VANET datasets originate mostly from simulations, as attacks
are more complex and may require several VANET enabled vehicles.
One exception is VDoS-LRS [45]. Many VANET simulations focus
on misbehavior, meaning that malicious vehicles provide incorrect
information or spoof the presence of other vehicles with the aim to
mislead the surrounding vehicles. Authors may provide simulation
configuration and setup, which has the advantage that datasets can
be extended or adapted to one’s specific needs and requirements.

In Table 5, we also included datasets not primarily created for
intrusion detection that may still be valuable in security contexts,
namely (i) the Halmstad GCDC dataset [3] contains internal events
and external communication of a real VANET environment, and
(ii) the HCRL Driving Dataset [32] contains approximately 23 hours
of driving one vehicle with 10 different drivers. Finally, the Next
Generation Simulation (NGSIM) dataset [56] does not contain any
attacks, but is often manipulated for use of misbehavior detection.

It should be noted that this list does not include datasets for
autonomous driving, e.g., DriveTruth [42] and nuScenes [7]. The
later also provides an overview of other automotive driving datasets.

4.2 Dataset documentation
The three documentation deficiencies in IVN and VANET datasets
are shown in Figure 4. Most data authors provided information
about the dataset and the attacks, however, we observed that very
few described both, selected features and their context. Further-
more, the provided documentation was sometimes ambiguous, forc-
ing us to make some assumptions (which may have affected the
interpretation of the other deficiencies).
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Instructions
insufficient
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Figure 3: Deficiency for labels.
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Table 4: Proposed data readiness for IDS applications with evaluation metrics provided as an example.

Band Deficiency Metric used in the evaluation

C Dataset documentation +0.5 if files described
+0.5 if environment and context described

Objective +0.5 if objectives explained
+0.5 if objective aligns with ours

Parseability

1.00 if standard format (e.g., CSV, JSON, PCAP)
0.75 if non-standard but readable format
0.50 if data requires pre-processing
0.00 otherwise

Dataset age 1 + (year of publication − start)/𝑁 (limited to [0, 1], 𝑁 = 5, 𝑠𝑡𝑎𝑟𝑡 = 2021)

B Format correctness and consistency +0.5 if no errors
+0.5 if single format

Dataset size

1.00 if > 1,000,000 samples/attack type
0.75 if > 100,000 samples/attack type
0.50 if > 10,000 samples/attack type
0.25 if > 1,000 samples/attack type
0.00 otherwise

Completeness

IVN (CAN): VANET:
1.00 if entire CAN frame included 1.00 if all data included
0.75 if only few non-essential fields are removed
0.50 if only ID + DLC + CAN data available 0.50 if some background data removed
0.25 if ID + padded payload
0.00 otherwise. 0.00 otherwise.

Label inclusion and correctness

1.00 if labels included
0.50 if instructions provided
0.25 if incorrect or incomplete instructions provided
0.00 otherwise.

A Class balance See Section 3.10

Attack documentation +0.5 if attacks described
+0.5 if attack setup described

Security coverage See Section 3.8

Attack realism

1.00 if real attacks in the wild
0.75 if real attacks by authors
0.50 if realistic synthetic attacks
0.00 otherwise

AA Dataset realism and diversity
+0.50 if multiple different vehicles
+0.25 if multiple driving situations
+0.25 if multiple drivers

Feature context and documentation +0.25 if features explained
+0.75 if context explained

Difficulty See Section 3.9

Transformation and anonymization +0.50 if not anonymized
+0.50 if not modified at all

AAA None –

4.3 Labels and class balance
As evident from Figure 3, some datasets did not provide labels or
instructions to correctly reconstruct the labels. Unfortunately, lack
of labels disqualifies a dataset from most applications. In fact, we
could not fully complete our investigations for multiple datasets as
some deficiencies could not be evaluated without access to labels.

For class balance, we also included datasets with partial or possi-
bly incorrect labels to obtain more samples. The results can be seen
in Figure 5, where IVN datasets seem to perform somewhat worse.
The reason we identified is that most VANET datasets are based
on simulations which allow for easier labeling. Note, however, that
except in extreme cases datasets with low balance score may still be

perfectly usable, although it is important to address the imbalance
during training and evaluation.

4.4 Parseability, correctness and consistency
While such issues seem to have been dominant in earlier studies
(as evident from Table 2), we did not note any such issues among
the examined datasets. In fact, the biggest problem we encountered
was that a small number of datasets employed two different (yet
still very similar) file formats.

4.5 Age, size and objective
As shown in Table 4, the age deficiency decreases linearly towards
zero after the start year. Figure 5 indicates that VANET datasets
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Table 5: Overview of the analyzed intrusion detection datasets. Notes: incomplete dataset (*), the simulation is provided as
description (desc), with source code (sc) and/or with dataset (da).

Dataset Data Type Source Objective Year Ref.
Benign Attack

In-Vehicle datasets

HCRL OTIDS real real CAN/OBD-II Intrusion D. 2017 [35]
HCRL Car-Hacking Dataset real real CAN/OBD-II Intrusion D. 2018 [49]
HCRL Survival real real CAN/OBD-II Intrusion D. 2018 [20]
TU Eindhoven v2 real synthetic CAN/OBD-II Intrusion D. 2019 [14]
SIMPLE real real CAN voltage Intrusion D. 2019 [18]
SynCAN synthetic synthetic CAN Intrusion D. 2019 [21]
ORNL real real/synthetic CAN/OBD-II Intrusion D. 2020 [58]
CrySyS real synthetic CAN + GPS Intrusion D. 2021 [11]
Hisingen real real CAN/OBD-II Intrusion D. 2021 [24]
Bi2022* real real CAN/OBD-II Intrusion D. 2022 [6]
VANET datasets

Belenko2018 synthetic synthetic Sim(desc) Intrusion D. 2018 [5]
VeReMi synthetic synthetic Sim(da,sc,desc) Misbehavior D. 2018 [57]
Lastinec2019 synthetic synthetic Sim(desc) Misbehavior D. 2019 [33]
VeReMi Extension synthetic synthetic Sim(da,desc) Misbehavior D. 2020 [28]
VDoS-LRS real real IEEE 802.11g Intrusion D. 2020 [45]
VDDD synthetic synthetic Sim(desc) Intrusion D. 2021 [2]
Iqbal2021 synthetic synthetic Sim(da,desc) Misbehavior D. 2021 [25]
Other datasets

HCRL Driving Dataset real – CAN/OBD-II Driving behavior D. 2016 [32]
NGSIM real – Vehicle trajectories/videos Modelling traffic 2016 [55]
Halmstad GCDC Data real – V2V comm. Misbehavior D. 2018 [3]
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Figure 4: Deficiency for documentation.

are slightly more recent, which seems to agree with the current
research activities in the automotive domain.

For the size deficiency amodel with 105 parameters was assumed,
requiring at least 106 data samples to train. Furthermore, the size
was calculated separately for each type of attack in the dataset and
the smallest number was used to calculate the size deficiency. It
was noted that while IVN datasets were often smaller than ideal,
the VANET datasets were often sufficiently large.

The objective deficiency was significantly less exciting as al-
most all evaluated datasets were handpicked for their use in IDS
applications, and therefore received a perfect score of 1.0.

4.6 Completeness, transformation and
anonymization

Very few datasets were complete according to the criteria described
in Table 4. For example, VANET datasets sometimes had background
traffic or essential features removed. IVN datasets often excluded
important fields such as CRC, control flags and length, sometimes
only providing application layer information (see Figure 2). As such,
IVN datasets often lacked the information crucial for detecting
threat agents with replace and direct access capabilities.

We also investigated whether any datasets had been anonymized
or otherwise modified, including attempts to normalize the data. Un-
fortunately, this was not uncommon in IVN datasets while VANET
dataset were often provided in their raw original format, most likely
thanks to originating from simulations.

4.7 Realism and diversity
To quantify dataset realism and diversity, we investigated whether
datasets include data from multiple vehicles, drivers and driving
situations. As seen in Figure 5, few IVN datasets and even fewer
VANET datasets did this.



Systematic Evaluation of Automotive Intrusion Detection Datasets CSCS ’22, December 8, 2022, Ingolstadt, Germany

Age Size Balance Completeness Dataset
Realism

Attack
Realism

Labels

Deficiency

0.0

0.2

0.4

0.6

0.8

1.0

De
fic

ie
nc

y 
ra

tin
g

IVN

(a)

Age Size Balance Completeness Dataset
Realism

Attack
Realism

Labels

Deficiency

0.0

0.2

0.4

0.6

0.8

1.0

De
fic

ie
nc

y 
ra

tin
g

VANET

(b)

Figure 5: Various deficiencies for IVN and VANET datasets.

Attack realism was analyzed according to Table 4. IVN datasets
were shown to contain more unrealistic synthetic attacks despite
VANET datasets being mostly simulations. To the best of our knowl-
edge no dataset contained real attacks recorded in the wild.

4.8 Dataset difficulty
To better understand the need for difficulty, we first constructed a
simple experiment. Four different models (including ResNet-IDS
proposed by Seo et al. [49]) were trained against the HCRL Car-
Hacking DoS dataset. After training, all malicious entries were
modified to use a different high-priority sender ID (e.g., 2 instead of
0). As shown in Table 6, this minor change (a single input bit was
changed without otherwise affecting the attack) resulted in a signif-
icant IDS performance degradation. This demonstrates existence of
shallow heuristics in the dataset (see Section 3.9) that could result
in a very fragile IDS, vulnerable to trivial evasion attacks.

The estimated difficulty based on dataset complexity is shown
in Figure 6. This simple method was able to capture some dataset
issues, including the aforementioned problem.

4.9 Security coverage
We observed that IVN datasets mainly cover denial of service (DoS)
and spoofing attacks aiming to affect vehicle functions like speed.
Similarly, VANET datasets focus on changing the behavior of sur-
rounding vehicles by performing routing or spoofing attacks.

Table 6: Performance degradation due to flawed DoS training
dataset.

Model Parameters Training time [s] F1 before F1 after

MLP 8.5 × 104 9 0.99760 0.79480
CNN 1D 1.5 × 103 22 0.99710 0.01343
CNN 2D 1.0 × 103 400 0.99240 0.00021
ResNet 1.7 × 106 3000 0.99920 0.20974
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Figure 6: Volume overlap for some IVN datasets.

Attack and capability coverage for all datasets is shown in Table 7.
Spoofing and DoS are most common while repudiation attacks are
not included in any dataset and information disclosure was included
in one dataset (TUe v2) where they exploited diagnostic functions.

Figure 7 (a) shows the calculated attack coverage for each dataset,
with the highest score being 0.67. This analysis includes all six
STRIDE threats, although one could consider excluding repudiation
from aNIDS attack catalog. IVN datasets covermore types of threats
than VANET datasets, which mainly consider misinformation and
DoS. Two VANET datasets (VDDD and VDoS-LRS) focus exclusively
on variations of DoS. Such detailed datasets are also important for
IDS training, however, the aim of this assessment is to evaluate
how comprehensive datasets are.

The capability coverage shown in Figure 7 (b) was calculated
according to Section 3.8. All datasets consider read and write capa-
bilities while suppress and replace are much less common. To the
best of our knowledge no datasets covered direct access capabilities,
although in the case of VANET one could argue this capability is
not applicable due to wireless communication. Furthermore, if we
only consider control of other entities such as other vehicles and
RSUs (thus excluding intentional malicious modifications to the
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Figure 7: Attack coverage (a) according to STRIDE and (b) the capability coverage rating. The coverage of datasets and simulations
in gray is only based on their description.

Table 7: Security coverage of intrusion detection datasets.

Dataset Threat Capability
S T R I D E Re Wr Sup Rep Dir

In-Vehicle datasets

HCRL OTIDS S - - - D E Re Wr Sup Rep -
HCRL Car-Hacking S T - - D E Re Wr Sup - -
Dataset
HCRL Survival S - - - D E Re Wr - - -
TU Eindhoven v2 S - - I D E Re Wr Sup - -
SIMPLE S T - - D E Re Wr Sup - -
SynCAN S T - - D E Re Wr Sup - -
ORNL S T - - D E Re Wr Sup Rep -
CrySyS S T - - D - Re Wr - - -
Hisingen S T - - D E Re Wr Sup Rep -
Bi2022 S - - - D E Re Wr - - -
VANET datasets

Belenko2018 S - - - D - Re Wr Sup - -
VeReMi S T - - - - Re Wr - - -
VeReMi Extension S T - - D - Re Wr - - -
Lastinec2019 S T - - - - Re Wr - - -
VDoS-LRS - - - - D - Re Wr - - -
VDDD - - - - D - Re Wr - - -
Iqbal2021 S T - - - - Re Wr - - -

attacker’s own vehicle), no VANET dataset considers the replace
capability. In conclusion, the available IVN and VANET datasets
cover only a fraction of what an attacker is able to do.

It must be pointed out that our security coverage classification
was based on the available documentation, which was sometimes
unclear or ambiguous and left room for interpretation. As such, it
may contain some errors.

5 CONCLUSIONS
Use of machine learning in security requires careful analysis of
various aspects of the process. As noted in Section 2.4, the issue
of dataset quality has been extensively studied in the area of IT

network intrusion detection. In this work, we provide a similar
analysis for automotive systems with a number of in-vehicle net-
work and VANET datasets. More importantly, we propose a data
readiness variant for systematic analysis of security datasets. This
uncovers a number quality issues, such as:

(1) While general documentation is usually available, informa-
tion about context, attack type and attacker capabilities is
often missing or ambiguous.

(2) Labels are sometimesmissing, incomplete or incorrect, which
disqualifies the dataset from many IDS applications.

(3) Many times the included attacks are not very realistic and
to the best of our knowledge no dataset includes real attacks
recorded in the wild.

(4) IVN datasets are often limited to one type of network (CAN)
recorded from a diagnostic port that may not fully represent
the network (e.g., due to internal firewalls and proxies).

Using the recommended data readiness threshold of 0.85, only
one IVN dataset and two VANET datasets reached band A, and none
reached bands AA and AAA. This demonstrates that automotive
datasets must be improved significantly for training future IDS
solutions. Based on our observations, we propose the following
improvements to dataset authors:

(1) Improvement of documentation and better labeling.
(2) Inclusion of more recent and more varied datasets and more

realistic attacks.
(3) Assessment of the overall dataset health before publication,

for example using the presented IDS data readiness approach.
Alongside the new data readiness definition we provided some

examples for quantifying each deficiency with no or minimal do-
main knowledge. Some of these could be improved in future work,
for example by finding better methods for estimating dataset real-
ism, size and complexity.
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