
Deep Learning-based Time Series Forecasting for
Industrial Discrete Process Data

Olaf Sassnick∗†‡, Thomas Rosenstatter∗†, Andreas Unterweger†‡, Stefan Huber∗†
∗Josef Ressel Centre for Intelligent and Secure Industrial Automation

†Salzburg University of Applied Sciences
‡Paris Lodron University of Salzburg

olaf.sassnick@fh-salzburg.ac.at

©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
O. Saßnick, T. Rosenstatter, A. Unterweger, S. Huber, “Deep Learning-Based Time Series Forecasting for Industrial Discrete Process Data,” 2025 IEEE 8th
International Conference on Industrial Cyber-Physical Systems (ICPS), IEEE 2025.

Abstract—With the introduction of Industry 4.0, the contin-
uous collection and monitoring of industrial process data have
become fundamental aspects of modern operational technology
(OT) systems. The ability acquire high-resolution multivari-
ate time series data, offers new opportunities for data-driven
forecasting. Such forecasting facilitates proactive interventions,
including process optimization and anomaly detection, with ap-
plications ranging from efficiency improvements to cybersecurity.

While deep learning-based forecasting models have demon-
strated strong performance in various domains, their effec-
tiveness for discrete manufacturing processes are insufficiently
studied. In this paper, we introduce and publish a dataset
that captures the key characteristics of discrete manufacturing
time series data. We evaluate six state-of-the-art deep learning-
based forecasting models on this dataset, identifying Crossformer
and DUET as the best-performing approaches. However, we
also identified that more research needs to be done for data
generation, as it necessitates recursive forecasting due to real-time
constraints. We already improved the performance significantly
with DUET when performing a second-pass training based on
the model’s own forecasts.

Index Terms—forecasting, deep learning, dataset, discrete man-
ufacturing

I. INTRODUCTION

With the establishment of Industry 4.0, the permeability
of data [1] has become a key design principle of modern
Operational Technology (OT) systems. Industrial process data
is continuously collected and monitored. Advances in sensor
technology, growing industrial cyber-physical systems (ICPS),
onsite-computing resources, and high-throughput low-latency
industrial networks allow for the acquisition of high-resolution
data, capturing industrial processes in detail.

As a result, multivariate time series data with high resolution
and dimensionality are potentially available. One promising
approach for utilizing this information is data-driven fore-
casting, where insights from historical data allow to predict
future outcomes. These predictions enable proactive interven-
tions to improve the efficiency of an industrial process by
either predicting the impact of changes of process parameters
beforehand or detecting process anomalies and malfunctions
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Figure 1. An ICPS performing a repetitive discrete task.

on-the-fly. For instance, time series forecasting can be used
to optimize process parameters by predicting the impact of
changes in advance. This capability can be leveraged to
optimize product quality or enhance process efficiency, such
as improving cost-effectiveness [2]. Another application is to
detect process anomalies by identifying differences between
the actual and predicted time series. Such anomalies may
indicate system malfunctions or defects.

In this context, time series forecasting can strengthen cyber
security as well, since detected process anomalies may result
from cyber attacks [3]. Furthermore, data-driven forecasting
can also be employed as generative models in honeypots,
serving as defense mechanism by misleading potential attack-
ers [4].

The recent advancements in artificial intelligence have re-
sulted in a strong presence of AI-based forecasting models,
with transformer architectures currently representing the state
of the art [5]. The validation of universal forecasting models
is carried out using an established set of openly available
multi- and univariate time series from various domains [6].
Within this set, industrial processes are represented only
by the energy industry, such as the Electricity Transformer
Temperature (ETT) [7] or Electricity [8] datasets. However, the
processes found in the energy industry are continuous, which
are inherently different from those in the manufacturing indus-
try, where piece-wise discrete items in repetitive procedures
are produced. Compared to continuous processes, discrete
manufacturing processes as illustrated in Figure 1 exhibit dis-
tinct characteristics, including higher process fidelity, greater
determinism, and cyclic repetition (see Section II-A). Given
these unique characteristics of time series found in discrete
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Figure 2. The different sources of a discrete manufacturing process acting in
combination and affecting the result of the time series data.

manufacturing, our objective is to evaluate the performance
of state-of-the-art deep learning based time series forecasting
models for discrete manufacturing.

Contribution. First, we summarize the key characteristics
of time series data found in discrete manufacturing processes
and introduce an openly available dataset representing those
characteristics. Consequently five deep learning based models
are assessed for their effectiveness forecasting in discrete
manufacturing time series, where it is also evaluated how
these models respond to untrained scenarios, and test the
generalization capability of each forecasting model.

While there is related work towards discrete manufacturing
processes, such as production progress [9] and bottleneck [10]
prediction, we have found no work similar to ours that
investigates the data generation of multivariate time series of
the discrete production process itself.

Outline. The remaining content is organized as follows: In
Section II common discrete manufacturing process data char-
acteristics are defined, and typical industrial forecasting appli-
cations are introduced. The research questions are discussed
and the experiment procedure are outlined in Section III.
Section IV describes the dataset and presents the procedure for
each experiment. In Section V the results of the experiments
are analyzed. Finally, the key findings are summarized, further
implications are discussed, and future research directions are
given in Section VI.

II. BACKGROUND

A. Characteristics of Discrete Manufacturing Process Time
Series Data

Multivariate time series obtained from discrete manufactur-
ing processes have characteristics which have so far not been
considered in typical benchmark forecast datasets:

Process dynamics. Efficient production typically mandates
high throughput, which in return requires high data sampling
rates to capture fine-grained process details.

Deterministic behavior. Discrete manufacturing processes
are typically subject to precise control with minimal fluctu-
ations, requiring forecasting models to be sensitive to small
deviations.

Cyclic repetition. In discrete manufacturing, the same
process is repeated for each manufactured item. Modern Pro-
grammable Logic Controllers (PLCs), for instance, implement
priority-based cyclic execution models [11]. This results in
repeating temporal patterns, which appear periodically. In time
series analysis, this characteristic often defined as seasonal-
ity [6].

Table I
OVERVIEW ON FORECASTING REQUIREMENTS OF APPLICATIONS

AD PO DG PM

Short-Term • •
Long-Term • •
Real-Time • ◦ •

Detailing •
System Understanding • •

Notes: AD: Anomaly Detection, PO: Process Optimization
DG: Data Generator (Honeypot), PM: Predictive Maintenance

In the following, the focus is placed on the discrete manu-
facturing process of a single production machine, which can
be considered an ICPS. As shown in Figure 2, the time series
are the result of different sources acting in combination:

SCADA Input. Supervisory Control and Data Acquisition
(SCADA) inputs that orchestrate and synchronize the individ-
ual ICPS, e.g., a start/stop signal.

Programmed procedure. Typically, the ICPS executes a
pre-programmed procedure, such as a sequence of positions
and orientations for the end effector of a robotic arm.

Internal Control Loops. Control loops within the ICPS
regulate actuators according to sensor data to maintain a
desired performance, e.g., temperature control for a heater
element, or position control for an actuator [11].

Inherent Design-based Effects. Inherent due to the me-
chanical and electrical design of the ICPS, certain physical
effects can be observed, which are expected as part of normal
operation. For example, electrically, an analog signal can
only be quantized with a certain precision, and voltage ripple
caused by actuators might reduce the sensor readout precision.
Mechanically, there can be geometrical tolerances, such as run-
out imbalance or backlash in a reduction gear.

In addition to the previously listed sources, that are expected
and part of normal operation, further undesired sources may
contribute as well:

External Disturbances. Environmental or external factors
that can influence the system’s operation, such as abnormal
temperature or unforeseen events, like an external force acting
on a component of the ICPS.

Degradation Effects. The impact of wear-out of physical
system components that can lead to performance degradation
and, ultimately, failure over time.

B. Applications for Forecasting of Discrete Manufacturing
Time Series Data

Depending on the type of application, different forecasting
requirements are relevant, as summarized in Table I. For
Anomaly Detection (AD) in Discrete Manufacturing, typically
short-term forecasts are required, identifying unusual patterns
or behavior that deviate from the forecast behavior. For ex-
ample, in [12] the forging of metal components is monitored.
Anomaly detection is typically performed online; as such, real-
time capabilities are required, i.e., forecasting models need
to be computationally efficient. The focus can be either on
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Figure 3. Left: The schematic representation of the CPS (from [4]) for the
experiments with 2-DoF. Right: The frequency spectrum of the time series
shown in Table II.

Figure 4. The cyclic procedure running on the CPS with yaw ΨT and
pitch ΘT changing over time (from [4]), with the system responding ac-
cordingly with its outputs listed in Table II .

machines or goods, and might as well be security-driven to
detect ongoing attacks directed onto the industrial process.

In contrast, within Predictive Maintenance, indicating trends
in long-term time series are used to forecast the Remaining
Useful Life (RUL) of components. For instance, forecasts can
be compared to existing Run-to-Failure Data, for example as
it is commonly done for bearing components [13].

Process Optimization (PO) can be either online or offline,
with online again mandating real-time capabilities and system
understanding, as changes to the process are evaluated. For the
last, the Data Generator (DG) represents the least common
use-case. One application is a honeypot, where time series
are generated by a forecasting model [4]. For this use case a
stand-alone long-term data generation is required, meaning the
forecasting model continuously generates forecasts based on
own previous forecasts. As the goal of the honeypot is to make
an intruder believe it is interacting with the real system, the
resulting time series also needs to contain otherwise negligible
characteristic details (indicated in Table I as Detailing), such
as voltage ripple.

III. METHODOLOGY

This work aims to address two research questions (RQs):
RQ1. Which state-of-the-art deep learning based forecasting
model performs well with discrete manufacturing process time
series data?
RQ2. To what extent are deep learning based forecasting mod-
els capable of learning the underlying ICPS system dynamics,
and forecasting untrained system responses?

Both, RQ1 and RQ2, require a suitable dataset as a founda-
tion, representing a discrete manufacturing process. Therefore,
as a first step, a dataset is designed to match the characteristics
outlined in Section II-A. To address RQ1, models that perform

Table II
DESCRIPTION OF VARIABLES OF THE DATASET

Col. Name Description Type Sym. Unit

0 Time Elapsed time – t s
1 Voltage0 Fan 0 Voltage output U0 V
2 Voltage1 Fan 1 Voltage output U1 V
3 Yaw Actual yaw angle measured Ψ rad
4 Pitch Actual pitch angle measured Θ rad
5 TargetYaw Target yaw angle input ΨT rad
6 TargetPitch Target pitch angle input ΘT rad
7 YawDot Yaw, angular velocity estimated Ψ̇ rad/s
8 PitchDot Pitch, angular vel. estimated Θ̇ rad/s
9 Override Indicating an override

of TargetPitch ΘT

output M bool

well on the ETT [7] and Electricity [8] datasets - both
representing physical processes - are selected. Additionally
the traffic dataset is also considered, as it represents data with
high seasonality. Each model’s hyperparameters are tuned and
finally, different performance aspects are evaluated on a test
dataset.

In order to address RQ2, the dataset needs to be extended
by introducing random changes to an input variable. We
implement this by changing the input variable of the ICPS to
a random value at a random timestep during the normal cyclic
procedure. The response of the ICPS, which depends on both
its current state and the assigned random value, is captured
and compared to the forecast. This experiment is necessary
as it indicates whether the forecasting model has learned the
underlying system dynamics.

IV. EXPERIMENT SETUP

This section outlines the Dataset, Model Selection and
Hyperparameter Tuning, and carried out Evaluations. Addi-
tionally, the dataset and full source-code to study and rerun
the experiment is made available1.

A. Dataset

The ICPS in this work is represented by a demonstrator
consisting of a balancing beam with two mounted fans. It has
two Degrees of Freedom (DoF), namely pitch Ψ and yaw Θ,
as shown in Figure 3. By adjusting the airflow of the fans,
the system can maintain configurable target angles for both
yaw ΨT and pitch ΘT . The datasets created with this CPS
are modified from [4], ı̃n which the CPS is programmed to
follow a cyclic procedure, resembling a typical pick-and-place
process in discrete automation, as shown in Figure 4.

While the original datasets [4] contain 12 variables, this
experiment is limited to 8 variables, excluding motor currents
and speed trajectories. Additionally, the sampling rate is re-
duced to 100Hz. As shown in the frequency spectrum plot in
Figure 3, most of the time series have their main spectrum
below 2Hz. It mainly results in some information loss on the
motor voltage 0 and 1 time series, where the reduction results

1https://github.com/JRC-ISIA/paper-2025-icps-discrete-manufacturing-
time-series-forecasts

https://github.com/JRC-ISIA/paper-2025-icps-discrete-manufacturing-time-series-forecasts
https://github.com/JRC-ISIA/paper-2025-icps-discrete-manufacturing-time-series-forecasts


Table III
RANKING OF FORECASTING MODELS BASED ON THE ETTM,

ELECTRICITY AND TRAFFIC DATASETS BASED ON [5]

Year Model ETTm Electricity Traffic

2025 DUET [5] 1 1 1
2024 PDF [14] 3 2 3
2023 DLinear [15] 5 6 7
2024 iTransformer [16] 8 4 6
2023 PatchTST [17] 5 8 5
2023 Crossformer [18] 11 4 5

in a Mean Absolute Error (MAE) of 0.005V for each. Based
on their frequency spectrum, the variables can be grouped into
four clusters. The motor voltages exhibit the highest frequency
components, followed by the angular velocities for yaw and
pitch. Next, the actual yaw and pitch angles, and finally,
the target yaw and pitch angles contain the lowest frequency
components in the spectrum.

The second dataset is designed to address RQ2. While it
initially follows the cyclic procedure illustrated in Figure 4,
at a random time, the target pitch angle ΘT is manually set
to a random value between 0◦ and 40◦. Shortly before this
change, the override flag is activated. The system’s response
depends on whether it was stationary or in motion and on the
distance to the previous ΘT . The system holds ΘT and ΨT for
8 seconds and afterwards restarts the cyclic procedure [4].

B. Model Selection and Hyperparameter Tuning

Based on the available results of 2025 in [5], the deep
learning based forecast models are selected according to their
ranking, as displayed in Table III.

The implementation of the forecasting models is used
from [5] and [19]. The hyperparameter tuning is carried out
using Ray [20] setup with the ASHA scheduler and the
Hyperopt search algorithm. A batchsize of 32 is used, as
proposed in [6].

The input sequence length (lookback or history) is set to
1600 values, and the horizon (lookahead) is set to 400 values.
A sequence of 400 values is typically considered a long-term
forecast, however with the high sampling rate of 100Hz, this
results in a 4-second forecast. While increasing the lookback
slightly improves performance, it also significantly increases
the model size.

Training is carried out with two data sources: one stor-
ing the normal cyclic procedure and a second storing the
time series with random overrides (as described in Sec-
tion IV-A), both joined into a single custom Torch Dataset.
The train/validation/test split is set to 3/1/1 in both cases. For
the normal cyclic data, training is performed using a rolling
window strategy. For the random overrides, it is ensured that
the override is always initiated within the lookback sequence,
since otherwise, there are no indications for the override
occurring, thus making it impossible for the model to forecast
the system response.

C. Evaluation

For all evaluations, the MAE and Mean Squared Error
(MSE) scores are used, where y represents the actual time
series and ŷ the forecast series, both of length n:

MAE =
1

n

n∑
i=1

|yi − ŷi|, MSE =
1

n

n∑
i=1

(yi − ŷi)
2.

In order to allow for averaging of MAE and MSE with even
weighting across all variables, each variable is normalized first
with a standard scaler.

To answer RQ1 and RQ2, four different evaluation scenarios
are being studied:

Short-Term Forecasts: Initially, the focus is set on short-
term forecasts, as they are relevant for online anomaly detec-
tion and process optimization. Given that the variables exhibit
distinct frequency patterns, the performance is quantified per-
variable with the MAE and MSE. This approach offers insight
of the individual contributions of each variable to the overall
error.

Downsampling of the Input Sequence: As Nie et al. [17]
note, performance can improve with a longer lookback se-
quence. Given the high sampling rate as a data characteristic,
one option is to lower the sampling rate of the input while
retaining the sequence length, thus covering a longer time
segment. For the forecast sequence, the decoder should be
capable to learn maintaining the original sampling rate.

Recursive Forecasting for Data Generation: The third
part evaluates the model with a recursive forecasting strategy,
as this is necessary for a stand-alone data generator. With a
recursive forecasting strategy, forecast sequences are used as
part of the input sequence for subsequent forecasts. As already
found in [4], it is expected that errors accumulate leading to
a worsening MAE and MSE with each step of the recursion.
In machine learning, training with lower-quality data is often
used to improve model robustness. Based on this concept, a
two-pass strategy is applied, where the model does a second
training pass using its own previously generated forecasts.

System understanding with Override Conditions: The
final part of the evaluation sets out to answer RQ2 and
addresses the model’s capability to understand the system
dynamics. In this scenario, the input sequence starts with
normal cyclic behavior, but ends where an override takes place,
with both an random target pitch and a corresponding override
flag set at the end of the input sequence. Consequently, based
on the trained override scenarios and normal operation time
series data, the model needs to forecast the system behavior.

V. RESULTS AND ANALYSIS

The results for the Short-Term Forecasts are given in
Table VI and visually exemplary results are displayed in
Figure 6. This first evaluation scenario most closely resembles
other typical forecasting tasks and, therefore, results in the
best performance for each model. Despite the deterministic
repeating cyclic procedure (Figure 4), iTransformer and DLin-
ear already exhibit inferior forecasting results. Examining the



Table IV
MEAN RECURSIVE FORECASTING RESULTS OF THE OVERALL MAE

(AVERAGE ON ALL NORMALIZED VARIABLES) ACROSS n = 100 RUNS AND
UP TO 80 RECURSIONS.

Model/Iteration 0 20 40 60 80

DUET 0.046 0.339 0.597 0.844 0.921
DUET* 0.048 0.089 0.114 0.160 0.210

Crossformer 0.054 0.544 0.749 0.923 1.093
PDF 0.078 0.972 1.205 1.236 1.246

PatchTST 0.088 0.960 1.012 0.965 0.972
iTransformer 0.160 0.929 1.020 0.879 0.917

DLinear 0.626 1.082 1.039 1.052 1.074

* indicates a second training pass with own forecasts.
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Figure 5. Recursive forecasting, showing the median as a plotted line with
a shaded area representing the lower and upper quartiles for each model (*
indicates a second training pass with own forecasts).

different variables, the highest MAE is present for the voltages,
followed by the angular velocities, with the actual and target
angles last. This correlates well with the frequency plot in
Figure 3, where the voltages exhibit the highest frequency
spectrum. The present voltage ripple is not predictable and,
therefore, results in a higher MAE and MSE.

Table V contains results for Downsampling of the Input
Sequence. While the results do not improve, the decoder of the
model is capable of forecasting data with the original sampling
rate. However, a slightly smaller standard deviation is visible,
indicating that the twice-as-long lookback sequence makes
the forecast more robust without compromising computational
efficiency due to the unchanged parameter count of the model.

The results for Recursive Forecasting for Data Genera-
tion can be found in Table IV. Here, the potential use case
as a stand-alone data generator is evaluated. After receiving
an initial lookback input sequence of the multivariate time
series, the forecast model recursively makes predictions, which
are again based on its own previous forecasts. The real-time
constraints demand that one cannot generate a single long-term
forecast. As each forecast introduces some error, each model’s
performance degrades with every iteration step in recursive
forecasting. The ranking among the models remains consistent:
the model with the least error in single forecasts is best suited

Table V
AVERAGE FORECASTING RESULTS FOR n = 100 RUNS, EVALUATING THE

EFFECT OF 2X DOWNSAMPLING OF THE INPUT (’DS’ INDICATING THE
DOWNSAMPLING).

Average MAE and MSE
DUET 0.049± 0.018 0.013± 0.027

DUETds 0.050± 0.017 0.012± 0.014

for the task. Generally, however, the degradation is severe, so
none of the models seem suitable for a real application. The
results, however, can be improved by applying a second-pass
training, where the model is trained to make forecasts based on
its own previous forecasts, as shown in Figure 5 and Table IV.
In this case, the degradation is lower, with the MAE at times
being over five times less.

Table VII shows the average results for System Under-
standing with Override Conditions, while Figure 7 gives two
sample results. Both DUET and Crossformer perform well in
this evaluation and also forecast the voltages with good ac-
curacy, which typically exhibit highest frequency components
(see Figure 3). As observable in Figure 7, offset errors in the
prediction of yaw exist.

VI. CONCLUSION

Deep learning-based forecasting for multivariate time series
has recently seen notable advancements. However, for the eval-
uated dataset, which resembles an industrial discrete process,
significant deviations in forecasting quality remain.

In this paper, we identify key characteristics of discrete
manufacturing time series data and introduce a publicly avail-
able dataset that exhibits these features. Our evaluation of
state-of-the-art deep learning-based forecasting models on this
dataset shows that Crossformer and DUET achieve the best
performance.

However, we identified that more research needs to be done
for data generation, as it necessitates recursive forecasting
due to real-time constraints. We already improved the perfor-
mance with a second-pass training based on the model’s own
forecasts. With this method, DUET showed significant perfor-
mance improve compared to the other models. Additionally,
an important aspect, though not included in this study, is the
computational efficiency of each model.
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Figure 6. Lowest (first row) and highest (second row) average MAE result of the best forecasting model (DUET) for 8 variables of n = 101 generated
forecasts.
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