
Towards Synthetic Data Generation of VANET
Attacks for Efficient Testing

Thomas Rosenstatter
RISE Research Institutes of Sweden

Gothenburg, Sweden
thomas.rosenstatter@ri.se

Kateryna Melnyk
RISE Research Institutes of Sweden

Lund, Sweden
kateryna.melnyk@ri.se

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
T. Rosenstatter, K. Melnyk, “Towards Synthetic Data Generation of VANET Attacks for Efficient Testing,” accepted in 2023 IEEE Intelligent Vehicles
Symposium (IV2023), IEEE 2023.

Abstract—Vehicle-to-Vehicle communication can improve traf-
fic safety and efficiency. This technology, however, increases the
attack surface, making new attacks possible. To cope with these
threats, researchers have made a great effort to identify and
explore the potential of cyberattacks and also proposed various
intrusion or misbehaviour detection systems, in particular ma-
chine learning-based solutions. Simulations have become essential
to design and evaluate such detection systems as there are no real
publicly available Vehicular Ad-Hoc Network (VANET) datasets
containing a variety of attacks. The drawback is that simulations
require a significant amount of computational resources and time
for configuration.

In this paper, we present an attack simulation and generation
framework that allows training the attack generator with either
simulated or real VANET attacks. We outline the structure of
our proposed framework and describe the setup of a standard-
compliant attack simulator that generates valid standardised
CAM and DENM messages specified by ETSI in the Cooperative
Intelligent Transport Systems (C-ITS) standards. Based on the
introduced framework, we demonstrate the feasibility of using
deep learning for the generation of VANET attacks, which
ultimately allows us to test and verify prototypes without running
resource-demanding simulations.

Index Terms—VANET, cybersecurity, generative adversarial
networks

I. INTRODUCTION

In the last decade, vehicular systems have gained much
attention in regard to cybersecurity, mainly due to the increas-
ing use of external communication and the advancement in
automated and autonomous driving. Vehicle-to-Vehicle (V2V)
communication is one example of external communication
which is seen as a key enabler for improving traffic safety
as vehicles blocked by objects (out-of-sight) can be detected.
V2V communication also increases traffic efficiency by in-
troducing new functionalities like platooning and cooperative
intersections [1].

Day one applications for cooperative driving are defined in
the ETSI C-ITS standards, which include the communication
stack based on EU ITS-G5, and the two types of C-ITS
messages Cooperative Awareness Messages (CAMs) and De-
centralised Environmental Notification Messages (DENMs).
CAMs are heart-beat broadcast messages consisting of basic

Both authors contributed equally to this work. This work was partially
supported by the Swedish Innovation Agency Vinnova through the project
ICV-Safe (2019-03418) and the FFI project DIFFUSE (2021-05038).

information such as the speed of a vehicle while DENMs are
warning messages broadcast when a specific event such as an
accident is detected.
Motivation. These advancements in Vehicular Ad-Hoc Net-
works (VANETs), however, also pose a higher risk to be
targeted by an attacker (e.g., [2]) whose aim is to disrupt traffic
or even cause accidents. To cope with this expanding threat
landscape, it is needed to develop techniques for detecting at-
tacks in VANETs. Research in various fields has been adopting
machine learning methods for the development of Intrusion
Detection Systems (IDSs), and also for the application in
VANETs [3]. Designing machine learning-based IDSs requires
an understanding of the type of communication and traffic
data. The limited access to such data may cause current
solutions to only focus on a small set of possible attacks
or to rely on simulations [4]. Though using simulations in
VANETs has the advantage to simulate corner cases and other
rare attacks, many of these simulation frameworks are not open
source or require a commercial license.
Contributions. We aim to address these challenges through
our proposed framework named CyberSAGE. We extend the
ezCar2x [5] framework, which is a VANET simulation frame-
work developed and maintained by Fraunhofer IKS. It provides
a detailed implementation of the ETSI ITS-G5 stack including
CAM and DENM messages. The detailed implementation in
ezCar2x enables us to implement VANET misbehaviour at-
tacks that are ETSI standard-compliant and thus could be used
for efficient testing of real modules. Due to the lack of real-
world VANET attack traffic [4], we use the attack simulator
for data collection and then train an attack generator based
on generative adversarial networks (GANs). Such an attack
generator has the advantage of requiring fewer computational
resources once trained. It also allows us to generate new attack
traffic that shares similar characteristics from the original
dataset for a larger and more diverse dataset. More specifically,
we (i) design a framework for the simulation and generation of
synthetic data, (ii) demonstrate the feasibility of using GANs
to generate VANET attacks, and (iii) provide an evaluation of
the preliminary results.

II. RELATED WORK

In this section, we describe existing work in VANET
simulation with a focus on attack behaviour, the application

of deep generative models to VANET attack data, and the
advancements in generating time-series data.

A. VANET Attack Simulators

Attacks can be categorised according to the STRIDE threats,
i.e., spoofing, tampering, repudiation, information disclosure,
denial of service and elevation of privilege. Due to the nature
of VANETs, many attacks focus on so-called misbehaviour at-
tacks aiming to disrupt or re-route traffic by sending incorrect
information (mainly spoofing). Other types of attacks focus
on dropping messages (mainly denial of service, DoS) when
they are routed between nodes (e.g., black hole and grey hole
attacks) or re-transmit recorded traffic (e.g., replay attack) [2].

Kamel et al. [6] provide a comprehensive attack simulation
framework focusing on misbehaviour in VANETs which also
includes modules for local and global detection, such as speed
consistency, range plausibility and position plausibility checks.
One limitation of this framework is that it does not include
ITS-G5 compliance up to the application layer, i.e., compliant
implementations of CAMs and DENMs.

Iqbal et al. [7] focus on the generation of a learning dataset
for VANET attacks. The authors use the Eclipse MOSAIC
simulator [8] for generating the dataset, which gives other
researchers the possibility to create their own scenarios, yet
it also requires more computational resources for running
the simulation. The attacks available in the provided dataset
contain replay and bogus information attacks.

Belenko et al. [9] propose a simulator for generating
VANET datasets by using the ns-3 network simulator [10]
and further log routing tables and the distributed packets. The
paper focuses on the generation of routing-based attacks like
DoS, black hole, and grey hole attacks. The user can choose
from 10 different pre-defined mobility models, e.g., city traffic
in Paris. The authors, however, do not provide any details on
the standards they followed.

B. VANET Attack Generation and time series signals

After the introduction of GANs in 2014 by Goodfellow
et al. [11], they have been applied in various domains such
as computer vision, natural language processing, and time
series. The following part reviews previous work that employs
GANs for generating VANET attacks, together with the latest
developments on continuous-valued sequence generation.

Generating VANET attacks is challenging due to the variety
of attacks and the difficulty to represent the feature space
and target space in a way (as numerical vectors) that the
neural network can handle. One method that utilises a GAN
in a traffic scenario is introduced by Seo et al. [12]. Yet,
the focus of their work is not the generation of synthetic
data, but the development of an IDS based on GANs for
detecting unknown in-vehicle attacks in CAN data. Shu et
al. [13] present a collaborative misbehaviour detection system
based on software-defined networking (SDN). The proposed
approach uses GANs to enable multiple distributed SDN
controllers to jointly train a machine learning model for the
entire network. Evidently, not many works have been exploring

the generation of VANET attacks. Most methods have focused
on building IDSs, whereas we are aiming at investigating the
use of deep generative models for generating synthetic data of
VANET attacks.

Deep generation models for continuous-valued sequences
such as time series have been drawing a great amount of
attention in a variety of applications. The closest to our work
is the generation of in-vehicle signals for testing low-level
vehicle control software. Parthasarathy et al. [14] applied
the Variational Autoencoder-Generative Adversarial Network
(VAE/GAN) architecture to learn an unlabelled dataset of
recorded in-vehicle signals and use it for the generation of
synthetic input stimulus. To capture characteristics that are
interesting for the test and customise stimulus generation, they
introduced a template and metric-based linear interpolation
algorithm. Parthasarathy et al. [15] improve on the work
above by introducing a simpler way of using templates to
set explicit objectives for domain adaptation. Moreover, they
utilise unsupervised disentanglement representation to enrich
the generation of the test stimulus. In [16], Zec et al. train
a recurrent GAN to generate a time series of automotive
perception sensors for simulation-based verification. In [17]
and [18], the authors have applied convolutional GANs for
sequence generation. Both works use a mixture density net-
work and Wasserstein-1, while the latter additionally per-
forms k-means clustering to evaluate the effectiveness of the
generated synthetic time series datasets. Another method is
TimeGAN [19] that generates realistic time series data from a
leaned embedding space which in turn is optimised with both
supervised and adversarial objectives.

III. THE CYBERSAGE FRAMEWORK

In this paper, we propose a Cybersecurity Simulation and
Attack Generation (CyberSAGE) framework. As illustrated
in Figure 1, CyberSAGE provides an environment for attack
simulation and generation to allow early verification and
validation of VANET prototypes including machine learning-
based solutions and more efficient testing to verify the resis-
tance to cyberattacks.

Attack
Simulator

Input/configuration as
command line input or XML

Attack X at time X for X seconds
with THESE details

Attack Generator

Analyse/Replay

Attacker’s
trajectory

Generate valid
CAMs with correct

meta data

PCAP
file

CAM
log

System
under test

Verify
prototyping

solutions

Radio device

Fig. 1. Overview of the CyberSAGE framework.

The simulation of attacks in VANETs allows us to model
various attacks and corner cases, however, sharing such simu-
lations requires time for installation and configuration as well
as sufficient computational resources to run them. Therefore,

CyberSAGE trains the attack generator based on the simulated
data so that attack behaviours from simulation and/or realistic
VANET attacks can be extracted and re-generated. The attack
behaviour can be further used to verify the correct behaviour
of prototypes when being exposed to attacks and to train
other machine learning models for misbehaviour detection.
CyberSAGE is under development with existing components
marked green in Figure 1. A parser is planned to generate valid
CAM messages that allows more efficient testing of VANET
components to accommodate a wide variety of attacks.

The following part describes the CyberSAGE process in
more detail. In Section IV, the attack simulator is presented,
followed by a feasibility study of a GAN-based VANET attack
generation in Section V and evaluation in Section VI.

IV. ATTACK SIMULATOR

The VANET simulator in CyberSAGE consists of three
components: a network simulator, a mobility simulator and
the middleware which implements the vehicle behaviour and
cooperative actions. The network simulator is responsible for
simulating the network characteristics of each node, e.g.,
radio communication stacks. Mobility simulators, such as
SUMO [20], simulate the roads, the individual vehicles as well
as their behaviour in traffic. This includes the road topology,
speed limits and driving lanes. The middleware links both
simulators and allows the implementation of vehicle behaviour.

We have identified 11 VANET simulation frameworks
(i.e., [5], [6], [8], [21]–[26]). Note, Eclipse MOSAIC [8]
provides two versions, Essentials and Extended. Three of these
eleven VANET simulation frameworks are using the ETSI ITS-
G5 network stack and are still actively developed, namely
Artery [22], Eclipse MOSAIC (Essential/Extended) [8] and
ezCar2x [5]. CyberSAGE integrates exCar2x as the VANET
simulation environment since it provides a detailed implemen-
tation of ETSI ITS communications stack including compliant
CAM and DENM messages, and uses MIT, EPL or GNU GPL
v2 licensed software only.

To summarize, the attack simulation framework comprises
(i) ezCar2x for implementing normal and attack behaviour,
(ii) ns-3 [10] for simulating the network, and (iii) SUMO [20]
for traffic simulation. An overview is provided in Figure 2. The
simulation is coordinated through an ns-3 script, which defines
and instantiates the nodes, installs the ezCar2x applications
and connects to SUMO via the Traffic Control Interface
(TraCI) [20]. The roads, the environment (e.g., speed limits)
and the default routes of the vehicles are defined through
SUMO configurations. In the remainder of this section, we
describe the overall structure of how we implemented mali-
cious/attack behaviour in ezCar2x and further outline which
attacks we have implemented.

The ezCar2x application is configured through a configura-
tion file which allows setting the vehicles to act as an attacker
or benign vehicle, the travel behaviours such as the route
they should take (straight or the bypass road), and whether
they should drive in a platoon, as well as attack scenarios
such as which attack, when it should be performed, and

ezCar2X
Software framework for prototyping
Developed by Fraunhofer IKS
OpenSource and MIT licensed
https://www.ezcar2x.fraunhofer.de

Microscopic Mobility Simulator
https://www.eclipse.org/sumo/

Network Simulator
https://www.nsnam.org/
A script is used to:
à Setup wireless nodes
à Installs ezCar2x applications
à Launch vehicles

via Traffic Control
Interface (TraCI)

Fig. 2. Overview of the simulation environment comprising ezCar2x, ns-3,
and SUMO.

attack specific parameters. This configuration is then loaded
by the ns-3 script which installs the ezCar2x application.
To implement certain spoofing attacks, i.e., sending incorrect
information in CAM messages, it is also needed to implement
additional functions for CAM generation. This can be done by
modifying the existing implementation of CAM generation in
EtsiCaBasicService in ezCar2x.

Fig. 3. An example of a simulated scenario, where all vehicles take the bypass
road and the attacker spoofs a lower speed than currently driving.

Figure 3 shows the map of the SUMO simulation with a
main road and a bypass road. In the given example the attacker
spoofs a vehicle speed less than its current speed and thus
slows down the vehicles driving behind the attacker.

In the simulation, we consider cases where the attacker
has successfully compromised the vehicle or the V2X module
allowing them to transmit arbitrary, yet valid CAM and DENM
messages. As a first step, we have implemented four variations
of spoofing attacks aiming to cause disruption in the traffic
flow. The implemented attacks are the following.
Platoon Speed Spoofing. The attacker spoofs its own vehicle’s
speed in the CAM messages. The vehicles in the platoon are
following the attacker and thus slowing down as they merely
adjust their speed according to the received CAMs. In the
simulation, one can choose how many speed spoofing attacks
should be performed, which speed differences to the actual
speed should be spoofed, and the timing.
Roadwork Spoofing. The attacker sends wrong information
via DENM telling the other vehicles that there is a roadwork
ahead. Therefore, vehicles change their routes and take the
bypass road leaving the main road empty for the attacker.
Electric Emergency Brake. The attacker sends an incorrect
DENM telling that the vehicle performs an emergency break

y

116

n BN
ReLU

SoftPlus
Deconv2 Deconv4Deconv3

16

concat

fc
embedding

random noise

8
2

2

1

32100
1024 512

2
128

256

256

2
Deconv1

256

2

256

2
1

256

2

y

n
512

fcembedding

100

1

128

256

32

512

1
8
1

1024

concat

BN
 LeakyReLU

Sigmoid
Conv4Conv3Conv1

BN
LeakyReLU

Conv2
BN

LeakyReLU

21

100

(a) Generator network (b) Discriminator network

BN
ReLU

BN
ReLU

Fig. 4. The model architecture for the generator and discriminator network.

causing the vehicles behind the attacker to brake.
Sybil Attack. The attacker spoofs a number of vehicles
with their own identities such that the attacker may convince
the surrounding vehicles that the information (e.g., DENM
warning that ice is on the road) is indeed correct.

These attacks highlight that information needs to be verified
with other sensors (e.g., radar), and to perform plausibility
checks as recommended in ETSI TS 102 731. Furthermore, the
implementation of these simpler attacks shows that ezCar2x
can be used for simulating cyberattacks.

V. ATTACK GENERATOR

This section describes how we generate synthetic data using
GANs. We begin the section with the preliminaries, then
we present the chosen model architecture and explain how
we pre-process data obtained from the attack simulation (see
Section IV) as the input to the model.

A. Preliminaries

Deep generative networks are generative models that can
learn the mapping from a simple latent distribution to complex
data distribution and generate synthetic plausible data. GANs
are such deep generative models that employ a representation
→ generator → discriminator architecture. Given a latent rep-
resentation, typically sampled from a standard normal distribu-
tion z ∼ N(0, 1), a generator G maps z to a data space while
the discriminator assigns the probability y = D(x) ∈ [0, 1] of
x being a sample from the training data and probability 1− y
of x being an output of the generator x = G(z). Formally, the
objective function to be optimised is the following:

LGAN = logD(x) + log(1−D(G(z)) (1)

with respect to D/G. Despite wide applications of GANs and
continuous development, the training of GANs poses some
challenges such as mode collapse and non-convergence ([11],
[27], [28]).

B. Attack design and dataset

To generate synthetic data of VANET attacks, the first step is
the simulation of the speed spoofing attack and data collection.
Since we are exploring the feasibility of generating plausible
synthetic VANET attack data, we begin with simpler attacks

that can be represented as a set of discrete or continuous
variables suitable for the input to the deep learning model.

The analysed data from the simulation (see Section IV)
contains fixed-length vectors of vehicle IDs, CAM speed,
ground truth speed, heading, and the longitude and latitude.
The data contains seven vehicles, where six vehicles are
benign/normal vehicles, and one vehicle is the attacker who
spoofs their speed in the CAMs. In the training data, we
include 256-sample long sequences of the CAM speed and
actual speed so that the input data is of size 256 × 2. Fixing
the length and aligning the sequences allows us to treat them
like images and use a convolutional layer. Examples of training
data can be found in Figure 5. It shows that there is a speed
spoofing attack with one speed change (the attacker’s reported
CAM speed is 4m/s lower between sample 80 and 130) in (a)
whereas (b) and (c) show two respectively three speed changes
indicated with arrows.

Following the method, we create two types of data used in
the experiments:

• Data A contains the actual speed and the CAM speed
under one speed spoofing attack.

• Data B contains samples with one, two or three speed
spoofing attacks in one sequence.

The last step is to specify the data labels. Since we aim at
controlling what synthetic data we generate, either of normal
vehicles or the attacker, we define two labels for data A,
normal and attack, and four labels for data B, normal, and
one, two, or three attacks. We train the model on each of
these two datasets to see if the model is capable of capturing
and then generating different patterns of speed sequences.

C. Choosing the model architecture

In the proof-of-concept, we experiment with DCGAN pro-
posed in Radford et al. [29]. We implement the conditioned
version of DCGAN and adapt it to the dimension of our input
data with additional adaptations that help us make the model
stable during the training. By trial and error in architecture
selection, the generator and discriminator are designed as
follows.
Design of the generator. The generator consists of a decon-
volutional neural network composed of four layers. It expands
the dimension of a random vector z of the size 1 × 100 to

(a) One speed spoofing attack (b) Two speed spoofing attacks (c) Three speed spoofing attacks

Fig. 5. Simulated sequences of the speed spoofing attack. Top: speed of normal vehicles, Bottom: speed of the attack vehicle.

a data sample x̂ of the size 1 × 256 × 2. The input to the
generator also contains a class label which is passed through
an embedding layer with a size of 100. This means that each
of the class labels will be mapped to a different 100-element
vector representation. The output of the embedding layer is
then passed to a fully connected layer with a linear activation.

Design of the discriminator. The discriminator consists of
a convolutional neural network composed of four layers. The
discriminator takes the input x of the size 1 × 256 × 2 and
outputs 0 or 1. As in the generator, the input also contains
a class label that is passed through an embedding layer to
map it to a 100-element vector and then it is passed to a fully
connected layer with a linear activation. Finally, it is resized
to 1 × 256 × 2 to match the size of the input data. The new
vector of the class label and the input matrix are concatenated
into a final matrix of the size 2× 256× 2.

The model architectures of the generator and discrimination
networks are presented in Figure 4. To improve the stability of
the model, we apply various strategies from literature. First,
Goodfellow et al. [11] stated that early in the learning the part
of Eq. 1, namely log(1 − D(G(z))), saturates, which might
be a reason for an unstable model. Following this, instead of
training G to minimise log(1−D(G(z))), we train G to max-
imize logD(G(z)). Another strategy is to construct different
mini-batches for real (data from the simulator) and fake (data
from the generator) samples. We have also chosen different
learning rates for the Adam optimiser for the discriminator and
the generator. For the generator, the learning rate is 2·10−4 and
for the discriminator, the learning rate is 2 · 10−5. This way,
it takes more iterations for the discriminator to converge. The
momentum of 0.5 is set for both the discriminator and the
generator and the batch size is 64. The recommendation of
using LeakyReLU and tanh activation functions did not help
in achieving training convergence. Instead, the last layer of
the generator contains the softplus activation function which
results in a more stable model and better generated data.

VI. EVALUATION

We have trained the model on Data A and Data B presented
in Section V-B by using the model architecture described in
Section V-C. In this section, we discuss how well our model
is capable of generating plausible spoofed speed sequences.

A. Choosing metrics for evaluation

A wide range of evaluation metrics have been proposed
to evaluate the performance of GANs [30]. For example, the
evaluation of GANs usually includes the visual assessment of
the quality of the generated data and some evaluation metrics
such as maximum mean discrepancy or Frechet inception
distance.

Data AFig. 6. Examples of generated speed sequences using the model trained on
Data A. Top: speed of normal vehicles, Bottom: speed of the attack vehicle.

In this work, we first evaluate the results using the visual
assessment of the generated speed sequences. The main cri-
teria, which we use to evaluate whether the model is capable
of generating plausible attacks, is that the spoofed speed
and actual speed of the attack vehicle should differ at some
moment, whereas the actual speed of the normal vehicles
should follow the spoofed seed of the attack vehicle.

Secondly, as a qualitative assessment, we perform k-means
clustering to show that training speed sequences and synthetic
speed sequences cannot be distinguished as it is done in Zhang
et al. [18]. We generate 1000 speed sequences of synthetic

data and randomly choose 1000 speed sequences from real
(simulated) data. We first fit the k-mean clustering on the real
speed sequences and predict the cluster labels on synthetic
data. Then, we fit the k-means on the synthetic data and predict
the cluster labels on the simulated data. Finally, we combine
real speed sequences and generated sequences in one dataset
and randomly split them into training and testing sets. The
number of clusters is two as we consider two ground truth
labels: normal and attack vehicles. Ideally, the performance
of k-means should be the same in both cases. We evaluate the
performance of clustering with an Adjusted Rand Index (ARI).
We repeat each experiment 100 times, each time randomly
shuffling the data samples, and then obtaining the final ARI
by averaging the ARIs. An ARI value close to 0.0 corresponds
to random labelling and an ARI value close to 1.0 indicates
the highest corresponding to the ground truth labels.

Data B – 1 change

Fig. 7. Examples of generated speed sequences with one speed spoofing
attack using the model trained on Data B. Top: speed of normal vehicles,
Bottom: speed of the attack vehicle.

B. Results and discussion

First, we visually assess the quality of the generated speed
sequences on the model trained on Data A. Note that we
applied a Savitzky-Golay filter to smooth generated speed
sequences. Examples of generated samples can be seen in
Figure 6 for both normal vehicles (members of the platoon)
in the top row and for the attack vehicle (the head of the
platoon) in the bottom. As discussed earlier in this section,
whether the spoofed speed sent via CAM differs from the
actual speed would be considered a qualitative metric. From
the figures, we can see that both, the speed sequences of the
normal vehicle and the attack vehicle, meet this condition. In
regard to the k-means clustering, Table I shows the results for
different combinations of training and test datasets. We can see
that we obtain the best clustering result for the model trained
on Data A when we mix the simulated data and generated
data, and when the training set is the simulated data. The ARI
is slightly lower for the case when k-means is trained on the
synthetic data due to the presence of noise in the synthetic
data.

The next experiment is done on Data B. Figure 7 shows
examples of generated sequences based on the samples with
one speed spoofing attack. We can see in the speed sequences
of normal vehicles (top) that the speed transmitted via CAM

Data B – 2 changes

Fig. 8. Examples of generated speed sequences with two speed spoofing
attacks using the model trained on Data B. Top: speed of normal vehicles,
Bottom: speed of the attack vehicle.

Data B – 3 changesFig. 9. Examples of generated speed sequences with three speed spoofing
attacks using the model trained on Data B. Top: speed of normal vehicles,
Bottom: speed of the attack vehicle.

matches the actual speed, while the speed sequences of the
attack vehicle (bottom) show variations between spoofed speed
via CAM and actual speeds. This indicates that the model
can capture the difference between benign/normal and attack
vehicles. Figure 8 and Figure 9 illustrate examples of gener-
ated speed sequences for the samples with two speed spoofing
attacks and three speed spoofing attacks, respectively. The
results show a clear difference between the spoofed speed
(green) and the actual speed (red) during an attack which
indicates that the model captures the two main types of
vehicles. Another observation is that the number of speed
changes is not tightly correlated with the number of spoofing
attacks. Based on how we simulate the training data, we should
see the different number of speed changes in the spoofed speed
sequence. However, more than one speed spoofing attack is not
entirely obvious from the figures since vehicles need to slow
down when taking the right turn or when driving in the curve
as it is illustrated in Figure 3. The result of k-means clustering
for the data generated with the model trained on Data B can
be found in Table I.

VII. CONCLUSION

Cybersecurity is vital for the successful introduction of
connected and autonomous vehicles. Different attacks must be
detected at an early stage to prevent potential consequences.
Machine learning (ML) has been widely used for the design of

Train Test ARI (Data A) ARI (Data B)
Simulated Synthetic 1.0 1.0

Synthetic Simulated 0.98 0.84

Mixed Mixed 1.0 0.99
TABLE I

k-MEANS CLUSTERING PREDICTION RESULTS. THE SYNTHETIC DATA IS
GENERATED WITH THE MODEL TRAINED ON DATA A RESPECTIVELY

DATA B.

various intrusion or misbehaviour detection systems. Effective
ML-based solutions for intrusion detection systems and their
testing require a large amount of training data related to
different attack scenarios. The lack of such real-world VANET
attack traffic is limiting the development of efficient methods
for improving cybersecurity, especially ML-based methods. In
this paper, we present CyberSAGE, a framework that facili-
tates cybersecurity research. The framework leverages multiple
simulators for data generation and collection, followed by
synthetic data generation based on GANs. We have shown
based on the speed spoofing attack scenario that we can
generate plausible synthetic data.

CyberSAGE is in the starting phase with a proof of concept
with several future research directions. An obvious direction
is the inclusion of multiple and more complex attacks to
accommodate the increasing complexity when more vehicles
are connected. Another direction is the improvement of deep
generators so that we can generate the VANET attacks that
follow a certain structure needed for testing. New architectures
following the latest development in artificial intelligence will
be considered and integrated.

REFERENCES

[1] C. Englund, L. Chen, A. Vinel, and S. Y. Lin, Future Applications of
VANETs. Cham: Springer International Publishing, 2015, pp. 525–544.
[Online]. Available: https://doi.org/10.1007/978-3-319-15497-8 18

[2] H. Hasrouny, A. E. Samhat, C. Bassil, and A. Laouiti, “VANet security
challenges and solutions: A survey,” Vehicular Communications, vol. 7,
pp. 7–20, 2017. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2214209616301231

[3] F. Gonçalves, B. Ribeiro, O. Gama, A. Santos, A. Costa, B. Dias,
J. Macedo, and M. J. Nicolau, “A systematic review on intelligent
intrusion detection systems for VANETs,” in 2019 11th International
Congress on Ultra Modern Telecommunications and Control Systems
and Workshops (ICUMT), 2019, pp. 1–10.

[4] A. Vahidi, T. Rosenstatter, and N. I. Mowla, “Systematic evaluation
of automotive intrusion detection datasets,” in Proceedings of the 6th
ACM Computer Science in Cars Symposium, ser. CSCS ’22. New
York, NY, USA: Association for Computing Machinery, 2022. [Online].
Available: https://doi.org/10.1145/3568160.3570226

[5] Fraunhofer IKS, “ezCar2x: Streamlined Development of Networked
Vehicle Applications,” https://www.ezcar2x.fraunhofer.de/en.html, cited
April 2022.

[6] J. Kamel, M. R. Ansari, J. Petit, A. Kaiser, I. Ben Jemaa, and
P. Urien, “Simulation framework for misbehavior detection in vehicular
networks,” IEEE Transactions on Vehicular Technology, 2020.

[7] S. Iqbal, P. Ball, M. H. Kamarudin, and A. Bradley, “Simulating
malicious attacks on VANETs for connected and autonomous vehicle
cybersecurity: A machine learning dataset,” 2022. [Online]. Available:
https://arxiv.org/abs/2202.07704

[8] Eclipse Foundation, “Eclipse Mosaic - a multi-domain and multi-scale
simulation framework for connected and automated mobility,” https://
www.eclipse.org/mosaic/, cited April 2022.

[9] V. Belenko, V. Krundyshev, and M. Kalinin, “Synthetic datasets gen-
eration for intrusion detection in VANET,” in Proceedings of the 11th
International Conference on Security of Information and Networks, ser.

SIN ’18. New York, NY, USA: Association for Computing Machinery,
2018.

[10] nsnam.org, “ns-3 network simulator,” https://www.nsnam.org/, cited
May 2022.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair et al., “Generative adversarial nets,” in Advances in Neural
Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Weinberger, Eds., vol. 27. Curran Associates, Inc.,
2014.

[12] E. Seo, H. M. Song, and H. K. Kim, “GIDS: GAN based intrusion
detection system for in-vehicle network,” in 2018 16th Annual
Conference on Privacy, Security and Trust (PST). IEEE, aug 2018.
[Online]. Available: https://doi.org/10.1109%2Fpst.2018.8514157

[13] J. Shu, L. Zhou, W. Zhang, X. Du, and M. Guizani, “Collaborative
intrusion detection for VANETs: A deep learning-based distributed SDN
approach,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 7, pp. 4519–4530, 2020.

[14] D. Parthasarathy, K. Bäckström, J. Henriksson, and S. Einarsdóttir,
“Controlled time series generation for automotive software-in-
the-loop testing using GANs,” 2020. [Online]. Available: https:
//arxiv.org/abs/2002.06611

[15] D. Parthasarathy and A. Johansson, “SilGAN: Generating driving
maneuvers for scenario-based software-in-the-loop testing,” 2021.
[Online]. Available: https://arxiv.org/abs/2107.07364

[16] N. M. E. Listo Zec, H. Arnelid, “Recurrent conditional GANs for time
series sensor modelling.” the Time Series Workshop at International
Conference on Machine Learning, january 2019.

[17] E. Brophy, Z. Wang, and T. E. Ward, “Quick and easy time
series generation with established image-based GANs,” 2019. [Online].
Available: https://arxiv.org/abs/1902.05624

[18] C. Zhang, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Genera-
tive adversarial network for synthetic time series data generation in smart
grids,” 2018 IEEE International Conference on Communications, Con-
trol, and Computing Technologies for Smart Grids (SmartGridComm),
pp. 1–6, 2018.

[19] J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative ad-
versarial networks,” Advances in neural information processing systems,
vol. 32, 2019.

[20] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using SUMO,” in The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE,
2018. [Online]. Available: https://elib.dlr.de/124092/

[21] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled
Network and Road Traffic Simulation for Improved IVC Analysis,” IEEE
Transactions on Mobile Computing (TMC), vol. 10, no. 1, pp. 3–15,
January 2011.

[22] R. Riebl, “Artery – V2X simulation framework,” http://artery.
v2x-research.eu, cited April 2022.

[23] Rubinet Lab, ECE Department, University of California, Davis, “VEN-
TOS: VEhicular NeTwork Open Simulator,” https://maniam.github.io/
VENTOS/, cited April 2022.

[24] EstiNet Technologies Inc., “EstiNet VANET Add-on,” https://www.
estinet.com/ns/?page id=21146, cited April 2022.

[25] TETCOS, “NetSim: Model - Predict - Validate,” https://www.tetcos.
com/, cited April 2022.

[26] M. Malinverno, F. Raviglione, C. Casetti, C.-F. Chiasserini, J. Mangues-
Bafalluy, and M. Requena-Esteso, “A multi-stack simulation framework
for vehicular applications testing,” in Proceedings of the 10th ACM
Symposium on Design and Analysis of Intelligent Vehicular Networks
and Applications, ser. DIVANet ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 17–24.

[27] H. Chen, “Challenges and corresponding solutions of generative ad-
versarial networks (GANs): a survey study,” in Journal of Physics:
Conference Series, vol. 1827, no. 1. IOP Publishing, 2021, p. 012066.

[28] Z. Wang, Q. She, and T. E. Ward, “Generative adversarial networks in
computer vision: A survey and taxonomy,” ACM Computing Surveys
(CSUR), vol. 54, no. 2, pp. 1–38, 2021.

[29] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[30] A. Borji, “Pros and cons of GAN evaluation measures: New develop-
ments,” Computer Vision and Image Understanding, vol. 215, p. 103329,
2022.

https://doi.org/10.1007/978-3-319-15497-8_18
https://www.sciencedirect.com/science/article/pii/S2214209616301231
https://www.sciencedirect.com/science/article/pii/S2214209616301231
https://doi.org/10.1145/3568160.3570226
https://www.ezcar2x.fraunhofer.de/en.html
https://arxiv.org/abs/2202.07704
https://www.eclipse.org/mosaic/
https://www.eclipse.org/mosaic/
https://www.nsnam.org/
https://doi.org/10.1109%2Fpst.2018.8514157
https://arxiv.org/abs/2002.06611
https://arxiv.org/abs/2002.06611
https://arxiv.org/abs/2107.07364
https://arxiv.org/abs/1902.05624
https://elib.dlr.de/124092/
http://artery.v2x-research.eu
http://artery.v2x-research.eu
https://maniam.github.io/VENTOS/
https://maniam.github.io/VENTOS/
https://www.estinet.com/ns/?page_id=21146
https://www.estinet.com/ns/?page_id=21146
https://www.tetcos.com/
https://www.tetcos.com/

	Introduction
	Related Work
	VANET Attack Simulators
	VANET Attack Generation and time series signals

	The CyberSAGE Framework
	Attack Simulator
	Attack Generator
	Preliminaries
	Attack design and dataset
	Choosing the model architecture

	Evaluation
	Choosing metrics for evaluation
	Results and discussion

	Conclusion
	References

