CONSERVE: A Framework for the Selection of Techniques for
Monitoring Containers Security

Rodi Jolak®>¢*, Thomas Rosenstatter®?, Mazen Mohamad®?, Kim Strandberg®c,
Behrooz Sangchoolie?, Nasser Nowdehi® and Riccardo Scandariato®

University of Gothenburg, Sweden

b Chalmers University of Technology, Sweden
“Volvo Car Corporation, Sweden

4RISE Research Institutes of Sweden, Sweden
¢Hamburg University of Technology, Germany

ARTICLE INFO

Keywords:

Software and Systems Engineering
Virtualization

Security

Container Monitoring

Intrusion Detection

Attack Analysis

ABSTRACT

Context: Container-based virtualization is gaining popularity in different domains, as it supports
continuous development and improves the efficiency and reliability of run-time environments.
Problem: Different techniques are proposed for monitoring the security of containers. However, there
are no guidelines supporting the selection of suitable techniques for the tasks at hand. Objective: We
aim to support the selection and design of techniques for monitoring container-based virtualization
environments. Approach: First, we review the literature and identify techniques for monitoring
containerized environments. Second, we classify these techniques according to a set of categories,
such as technical characteristic, applicability, effectiveness, and evaluation. We further detail the pros
and cons that are associated with each of the identified techniques. Result: As a result, we present
CONSERVE, a multi-dimensional decision support framework for an informed and optimal selection
of a suitable set of container monitoring techniques to be implemented in different application
domains. Evaluation: A mix of eighteen researchers and practitioners evaluated the ease of use,
understandability, usefulness, efficiency, applicability, and completeness of the framework. The
evaluation shows a high level of interest, and points out to potential benefits.

1. Introduction

Agility, flexibility, and ability to rapidly evolve are cru-
cial for organizations to fulfill changes in the requirements
of customers and markets. Accordingly, organizations are
widely shifting towards the adoption of DevOps as well as
continuous integration and deployment practices Rodriguez,
Haghighatkhah, Lwakatare, Teppola, Suomalainen, Eskeli,
Karvonen, Kuvaja, Verner and Oivo (2017). However, the
adoption of these practices for the development of embed-
ded systems is a challenging endeavour, since these sys-
tems are increasingly complex and intensively depend on
hardware, sophisticated electronics, communication infras-
tructures, and real-time capabilities Lwakatare, Karvonen,
Sauvola, Kuvaja, Olsson, Bosch and Oivo (2016).

Virtualization enables and simplifies continuous soft-
ware development and deployment on virtual hardware,
applications, or operative systems. Container-based virtual-
ization is a software technology that enables software appli-
cations to run in virtual run-time environments on a single
operating system. In cloud computing, container technology

*Corresponding author

<] rodi.jolak@cse.gu.se (R. Jolak); thomas.rosenstattereri.se (T.
Rosenstatter); mazen.mohamad@cse. gu.se (M. Mohamad);
kim.strandberg@chalmers.se (K. Strandberg); behrooz.sangchoolie@ri.se
(B. Sangchoolie); nasser.nowdehi@volvocars.com (N. Nowdehi);
riccardo.scandariato@tuhh.de (R. Scandariato)

ORCID(S): 0000-0001-5656-9253 (R. Jolak); 0000-0002-9587-3423 (T.
Rosenstatter); 0000-0002-3446-1265 (M. Mohamad); 0000-0003-0892-2600
(K. Strandberg); 0000-0001-9536-4269 (B. Sangchoolie);
0000-0003-4869-6409 (N. Nowdehi)

is emerging as an important part of the cloud computing
infrastructure and is used in well-known public cloud plat-
forms, such as Google and IBM/Softlayer Bernstein (2014).
Furthermore, container-based virtualization is considered to
have a great potential for significantly advancing Platform-
as-a-Service technology toward distributed heterogeneous
clouds through lightweightness and interoperability Pahl
(2015).

Although the benefits of the container technology have
been widely acknowledged in cloud computing; this technol-
ogy is gaining popularity in different domains because of the
advantages that it brings to the consistency of the software
development and deployment process Merkel (2014), as well
as to the efficiency, scalability, and reliability of the run-time
virtual environment Soltesz, Potzl, Fiuczynski, Bavier and
Peterson (2007).

For example, in the Internet of Things (IoT) domain there
is a growing trend toward using the container technology,
since it can be used on devices characterized by fewer com-
putational resources to efficiently execute complementary
software Morabito (2017).

In the automotive domain, modern vehicles are equipped
with sophisticated software applications to serve differ-
ent purposes, such as supporting autonomous driving and
vehicle-to-everything (V2X) communication. The increas-
ing complexity of automotive systems, and the proliferation
of software functionalities that they provide, demands the
adoption of more efficient solutions for continuous develop-
ment and deployment in the future. Indeed, container-based
virtualization has shown to be effective in several ways. For

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 1 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

instance, Berger et al. Berger, Nguyen and Benderius (2017)
use a containerized software development and deployment
approach for self-driving vehicles. They show the effective-
ness of the approach in enabling a continuous deployment
of software components as well as ensuring traceability
between software sources and binaries. Moreover, Mora-
bito et al. Morabito, Petrolo, Loscri, Mitton, Ruggeri and
Molinaro (2017) indicate that container-based virtualization
is an efficient solution that offers high flexibility in the
management of the processes running on the On Board
Unit (OBU), and allows overcoming the complex software
updating procedures required by OBUs.

Motivation. While the use of container-based virtualization
brings many advantages including the facilitation of cloud-
based deployment and networking, there still exist concerns
about the security and safety of this technology Bernstein
(2014); Chandramouli and Chandramouli (2017); Combe,
Martin and Di Pietro (2016); Martin, Raponi, Combe and
Di Pietro (2018). Furthermore, the ever increasing connec-
tivity between systems paves the road for more security
attacks. Thus, sophisticated attack analysis techniques for
protecting these connected systems are required.

Different techniques for monitoring containers security
are proposed. However, there are no guidelines for sup-
porting the selection of suitable techniques for the tasks at
hand. The lack of such guidelines might thus influence the
decisions of architects and developers which, in turn, might
unintentionally undermine the overall security and safety of
the developed systems.

Contribution. To deal with the aforementioned issues, we
address the following research questions:

e RQ.1 What techniques are available for monitoring
container-based virtualization environments?

First, we review the literature to identify relevant tech-
niques for monitoring container-based virtualization
environments with the goal to provide a comprehen-
sive overview of these techniques. In particular, we
review 99 studies and identify 15 monitoring tech-
niques. The results are reported in Section 3. Second,
we ensure the reliability of the review by performing
a quality control on 15% of the data (15 studies).

e RQ.2 How can we support the selection of these
monitoring techniques?

First, we categorize the identified techniques to help
developers understand their purpose, technical char-
acteristics, applicability, and effectiveness. Yet, com-
bining these techniques can be beneficial to achieve
multiple monitoring-layers for securing containers.

Second, we further elaborate on the trade-offs (i.e.,
pros and cons) that are associated with each of the
techniques, e.g., with respect to efficiency, accuracy,
and other qualities. As a result, we present CON-
SERVE in Section 4, a framework for supporting

the selection of techniques for monitoring container-
based virtualization environments in different appli-
cation domains, such as cloud computing, cyber-
physical, and automotive.

e RQ.3 What is the perception of researchers and
practitioners on the understandability, usefulness, ef-
ficiency, applicability, and completeness of the frame-
work?

We plan and conduct an evaluation of the CON-
SERVE framework involving a mix of eighteen re-
searchers and practitioners from both academia and
industry. We report the results of the evaluation in
Section 5.

In summary, we provide a multi-dimensional multi-
domain decision support framework that is built based on
an comprehensive literature analysis. This framework helps
developers in having the required knowledge about container
monitoring techniques that are applicable to their problem.
Ultimately, it leads developers to the informed and optimal
selection of a suitable set of techniques to be implemented
for monitoring container-based virtualization environments.

2. Background

Virtualization techniques are beneficial in several as-
pects, such as the ability to optimize the use of resources,
separation by design (i.e., sandboxing), migration to other
hardware, and increased monitoring capabilities Huang and
Wu (2018). Hence virtualization techniques can be used
to improve the resilience of systems. However, by adding
complexity in the system architecture, the attack surface
increases and, thus, it is crucial that applications are secured.

There are various methods for running applications se-
curely and isolated, such as (i) container-based virtualiza-
tion, (ii) hypervisor-based virtualization and (iii) the use of
trusted execution environments (TEEs).

In container-based virtualization, also called application
virtualization, the host operating system is shared between
the applications. Figure 1 illustrates the basic structure of
containerized environments. The container runtime, e.g.,
Docker Docker (accessed December 2020), is responsible
for deploying the applications into containers and guarantees

Container Container Container
[)| [wr ([]
’ bin/lib ‘ ’ bin/lib H bin/lib ‘

’ Container Runtime ‘

‘ Operating System ‘

‘ Hardware ‘

Figure 1: Architecture of container-based environments Huang
and Wu (2018)

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 2 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

that the containers run in isolation. The runtime therefore
ensures that the operating system provides means for (i)
namespace isolation, to control the resources a container has
access to; (ii) resource allocation, to control the consumption
of resources, e.g., memory; and (iii) file system virtual-
ization, to efficiently use physical storage across several
containers. In addition to the application itself, a container
may also include specific libraries Huang and Wu (2018);
Souppaya, Morello and Scarfone (2017).

Early work already showed that container-based virtu-
alization is more resource efficient and scales better than
hypervisor-based solutions, which virtualize an entire sys-
tem including its operating system Soltesz et al. (2007).
Huang and Wu Huang and Wu (2018) provide an overview
of the classification and aspects of virtualization. Two types
of hypervisor-based virtualization exist, namely Type 1 and
Type 2 hypervisors. The former hypervisor, also called bare-
metal, runs directly on the physical hardware whereas the
latter runs as application on top of the operating system.
Huang and Wu further compare hypervisor-based virtual-
ization to container-based virtualization and identify four
advantages of container-based virtualization: faster deploy-
ment, containers start in seconds whereas hypervisor-based
solutions are slower since they need to launch the VM
with its own kernel; less resource requirement, containers
commonly share the operating system; flexibility, freezing
and resuming containers requires less resources compared
to virtual machine states of hypervisor-based virtualization;
and forensics, the state of containers can be more easily
accessed and monitored by the host system Huang and Wu
(2018).

Approaches to combine the benefits known from hypervisor-

based solutions, i.e., isolation and separation of applications,
with containers led to so-called lightweight virtualization
or micro VMs. These solutions use a hypervisor such as
KVM/QEMU, deploy each container in a separate VM with
its own lightweight kernel and use an optimized Virtual
Machine Monitor (VMM). Kata Containers Randazzo and
Tinnirello (2019) and Firecracker Agache, Brooker, lor-
dache, Liguori, Neugebauer, Piwonka and Popa (2020) are
representatives for this type of virtualization and are com-
pliant to the specifications defined by the Open Container
Initiative (OCI) OCI (accessed January 2021).

Trusted execution environments (TEEs) are designed to
provide a secure environment for applications to perform
security relevant computations that in most cases require
accessing cryptographic key material through, e.g., data
authentication, device/system authentication, and encryp-
tion/decryption. These trusted applications are typically not
standalone; they execute requests from the normal exe-
cution environment via a secure communication channel,
i.e., secure monitor. Two commercially used TEE solutions
are ARM TrustZone and Intel Software Guard Extensions
(SGX). Pinto and Santos Pinto and Santos (2019) highlight
that the code base of trusted applications needs to be kept
lean to avoid complex applications that are potentially more
prone to code vulnerabilities. Since, there is only one TEE

per device, a vulnerability in one trusted application can
affect the security of another.

Attempts to combine virtualization techniques with TEEs
have been made. For instance, Li et al. Li, Xia, Lu, Chen and
Zang (2019) propose to isolate trusted applications using
virtualization. A thin hypervisor (TEE-visor) running in the
TEE executes multiple virtualized TEE instances (VTEEs)
which are better separated from each other. SCONE Arnau-
tov, Trach, Gregor, Knauth, Martin, Priebe, Lind, Muthuku-
maran, O’Keeffe, Stillwell, Goltzsche, Eyers, Kapitza, Piet-
zuch and Fetzer (2016) utilizes a TEE, namely Intel SGX, to
increase the isolation of Docker Docker (accessed December
2020) containers. These research efforts Arnautov et al.
(2016); Li et al. (2019) highlight the potential of combining
TEEs with virtualization techniques, although more research
needs to be conducted to explore how TEEs and container
monitoring can be combined.

2.1. Related Work

NIST provides guidelines for the secure use of container-
based virtualization in SP 800-190 Souppaya et al. (2017).
These guidelines cover security aspects for the entire soft-
ware life cycle. Overall, NIST SP 800-190 results in six
recommendations for securing containers, among others the
advice of using OSs that have been specifically designed
for the use with containers in order to minimize the attack
surface; grouping of containers with the same properties on
a single OS kernel; and the use of container-aware runtime
defense mechanisms. The document further details the major
risks for each container component, namely the container
image, registry, orchestrator, container and host OS; and
identifies corresponding countermeasures described on a
system level. With the CONSERVE framework we support
the NIST recommendation to use container-aware runtime
defense tools.

Casalicchio and Iannucci Casalicchio and Tannucci (2020)
present an overview of commonly used container tech-
nologies grouped in container type, container manager
and orchestration framework. Performance, orchestration
and cyber-security are identified as the main challenges in
containerization, where cyber-security is further categorised
in isolation, encryption of image layers, and network se-
curity. The authors describe for each sub-category relevant
literature and conclude that the reviewed works focus mainly
on improvements in the container isolation, encryption of
images at rest and run-time as well as solutions making use
of Intel SGX.

Bélair et al. Bélair, Laniepce and Menaud (2019) set
the focus of their survey on kernel security mechanisms
for improving container security and propose a taxonomy
based on how the data to enforce security is transmitted,
i.e., configuration-based, code-based and rule-based, where
solutions belonging to the latter two allow the container
to require certain security demands. Moreover, the authors
evaluate the seven reviewed solutions in terms of (i) the
granularity one is able to define the policies; (ii) the level of
customization; (iii) the need for software modifications for

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 3 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

enforcing policies; (iv) usability in real life scenarios; and
(5) the extent to which security concerns can be addressed.

Another review of security solutions for containers is
provided by Sultan et al. Sultan, Ahmad and Dimitriou
(2019). The authors focus on security issues and challenges;
and review existing security solutions and map them to four
defined use cases: (i) inter-container protection; (ii) protec-
tion of the host from their containers; (iii) protection of the
containers from the applications in it; and (iv) protection of
the containers from the host. Additionally, each study is also
linked to the major risks for containers identified in NIST SP
800-190.

In comparison to the existing work focusing on review-
ing security measures for containerized environments, with
CONSERVE we provide a framework for categorizing and
choosing suitable secure monitoring techniques for contain-
ers allowing designers to make an informed decision for
selecting techniques for the task at hand. Moreover, we
provide a detailed analysis of each technique including a
trade-off analysis (i.e., pros and cons).

3. Approach

To create the CONSERVE framework, we employ the
design science research methodology Wieringa (2014). De-
sign science is an iterative process that involves problem
space exploration, solution implementation, and solution
evaluation. We first conduct a literature review to get a com-
prehensive understanding of the characteristics of container
monitoring techniques. These characteristics are then used
to create a multi-dimensional framework with a goal to sup-
port developers in making design decisions and ultimately
selecting the most appropriate monitoring techniques for the
task at hand.

In this section, we first provide details on the literature
review and snowballing approaches that we used to identify
techniques for monitoring containerized environments (Sub-
sections 3.1 and 3.2). After that, we describe how we create
the CONSERVE framework based on the studies that are
identified via the literature review (Subsection 3.3). Figure 2
provides an illustration of the approach which is further
detailed in the following subsections.

3.1. Literature Review

First, we perform a literature review using the Scopus
database. Scopus is a well curated database covering more
than 77 million records making it one of largest databases
of abstracts and citations Elsevier (accessed Janurary 2021).
We first use Scopus and collect a set of 99 studies in De-
cember 2020 using the following search terms: monitor(ing),
security, software or Linux, and container or Docker.

To check whether or not the studies are relevant for this
work, we perform a screening process by reading the title,
abstract, and keywords of the studies. During the screen-
ing process, we include studies that present techniques or
approaches for monitoring the security of containerized
environments. We exclude studies that:

A) Literature Review Using the Following Search Terms:
monitor(ing), security, software or Linux, and container or Docker
!
é Initial Number (IN)
of Relevant Studies: 7
(B) Backward and Forward Snowballing Search Approach

!
é Final Number (FN)
of Relevant Studies: IN + 8 = 15

Categorization of the Techniques for Monitoring
Container-Based Virtualization Environments

©

& CONSERVE
.ﬂ Framework

Figure 2: Approach

1. are not written in English,

2. describe high-level recommendations for securing
containers, without providing a comprehensive de-
scription of a technique that can be applied in practice,
and

3. donotreport an evaluation of the proposed techniques.

In total, we find 7 studies following the literature review
approach. These studies are included in Table 1.

3.2. Snowballing Approach

To complement our review and cover more relevant
work, we use the snowballing approach Wohlin (2014). This
search approach essentially involves repeating the screening
process on the papers in the reference list (i.e., backward
snowballing) and papers that cite the study under inspection
(i.e., forward snowballing). Google Scholar is used to per-
form this inspection to avoid publisher bias (e.g. searching
in one publisher’s database) Wohlin (2014). As a result,
we identify additional 8 relevant studies which ultimately
increases the number of studies considered in this work
to 15 studies (see Table 1). These studies are ordered by
the publication date; from September 2015 to March 2020.
Out of the fifteen identified studies, eleven are conference
publications, three are journal publications, and one study is
a workshop publication.

3.3. Categorization of the Techniques

The aim of this step is categorize the monitoring tech-
niques to provide a decision-support framework for an in-
formed selection of the techniques.

After collecting the relevant studies, two authors of this
manuscript discussed different aspects that can be used for
categorizing the monitoring techniques. The aim of this
discussion was to prepare and plan for the process of data
extraction. The discussed aspects are the following:

e What are the detection and analysis strategies adopted
by the monitoring technique? What are the required
input, activities, and outcome of the analysis?

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 4 of 24

Table

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

1

Considered Studies (Monitoring Techniques MTs) in the CONSERVE Framework

ID Reference Publication Publication Venue
MT1 De Benedictis and Lioy (2019) Journal Future Generation Computer Systems (FGCS)
MT2 Lei, Sun, Sun, Shenefiel, Ma, Wang and Li (2017) Conference Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA)
MT3 Khalimov, Benahmed, Hussain, Kazmi, Oracevic, Hussain, Conference Utility and Cloud Computing (UCC)
Ahmad and Kerrache (2019)
MT4 Mattetti, Shulman-Peleg, Allouche, Corradi, Dolev and Conference ~Communication and Network Security (ICCNS)
Foschini (2015)
MT5 Chen, Feng, Wen, Liu and Sha (2019) Conference Design, Automation, and Test in Europe Conference (DATE)
MT6 Zou, Xie, Huang, Xu, Feng and Long (2019) Journal IEEE Transactions on Cloud Computing (TCC)
MT7 Du, Xie and He (2018) Conference Algorithms and Architectures for Parallel Processing (ICA3PP)
MT8 Fourati, Marzouk, Drira and Jmaiel (2019) Conference Parallel and Distributed Computing, Applications and Technologies (PDCAT)
MT9 Gantikow, Z6hner and Reich (2020) Conference Parallel, Distributed and Network-Based Processing (PDP)
MT10 Abed, Clancy and Levy (2015) Workshop Security and Trust Management (STM)
MT11 Srinivasan, Kumar, Mahajan, Sitaram and Gupta (2018) Conference Security in Computing and Communication (SSCC)
MT12 Sayed and Azab (2019) Conference Information Technology, Electronics, and Mobile Communication (IEMCON)
MT13 Abed, Azab, Clancy and Kashkoush (2020) Journal Communication Networks and Distributed Systems
MT14 Gantikow, Reich, Knahl and Clarke (2019) Conference Cloud Computing and Services Science (CLOSER)
MT15 Kamthania (2019) Conference Electrical and Computer Engineering (WIECON-ECE)

e Which domains are the monitoring techniques appli-
cable to?

e What is the purpose of the monitoring techniques and
what are the consequences?

e How is the technique evaluated and what are the
evaluation results?

To systematically extract relevant details for the cate-
gorization of the techniques, we read the relevant papers
identified by the literature review and snowballing search.
By doing so, different details and aspects have emerged
and noted. These details are then organized in themes by
conducting a thematic analysis at the explicit level Boyatzis
(1998). As a result, high-level categories and sub-categories
are distinguished. The results are shown in Table 2. Four
main categories have emerged: Technical Characteristics,
Applicability, Effect, and Evaluation. Each one of these cate-
gories include a number of sub-categories providing specific
details of the monitoring techniques. Based on these cate-
gories, we made the following design decisions for building
of the CONSERVE framework (presented in Section 4):

e Technical Characteristics and Applicability, includ-
ing their corresponding sub-categories, will be used
for supporting the selection process and assisting the
identification of candidate monitoring techniques ap-
plicable to the problem or task at hand.

e Effect and Evaluation, including their corresponding
sub-categories, will be used for supporting an objec-
tive decision-making process for an optimal selec-
tion based on comparing the performance and conse-
quences of applying the monitoring techniques.

In the following, we provide details on the emerged cate-
gories and their corresponding sub-categories.

3.3.1. Technical characteristics

What are the detection and analysis strategies adopted by
the monitoring technique? What are the required input, ac-
tivities, and outcome of the analysis? This category includes
a number of sub-categories:

e Detection strategy: To distinguish between two differ-
ent strategies for intrusion detection; misuse-based vs.
anomaly based detection strategy.

e Monitored object: The object in the container-based
virtualization environment that is monitored by the
technique. This can be the host operating system (OS),
container engine, and/or the containerized applica-
tions.

e Intrusiveness: It indicates whether the monitoring is
done internally or externally with respect to the envi-
ronment in concern.

o Required resources: The resources that the monitoring
technique requires to operate. These resources can be
software, hardware, or both.

e Analysis strategy: It specifies the strategy that is
adopted by the technique for monitoring and analyz-
ing the activities in the virtualization environment.
Analysis strategies can be remote attestation, filtering
and introspection, rule-based, ML-based, or statistical
analysis.

o Analysis time: It specifies whether the monitoring is
done in real-time or forensically (i.e., offline mode).

e Analysis input: The resources that the technique uses
as an input for doing the analysis. These resources can
be, e.g., a set of system calls within a specific period
of time, a suspected application, sensor or traffic data,
or configuration details.

o Collected measurements: Such as the frequency of
interaction with the OS, as well as resource usage
(e.g., CPU, memory and network).

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 5 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

Table 2

Categorization of the Techniques for Monitoring the Security of Containerized Environments

Category

Sub-Category

Description or Example

Technical Characteristics

Applicability

Effect

Evaluation

Detection Strategy
Monitored Object
Intrusiveness

Required Resources
Analysis Strategy
Analysis Time

Analysis Input

Collected Measurements
Analysis Procedure
Response/Reaction

Domain
Software Type

Targeted Threats
Targeted Attacks
Targeted Faults
Pros

Cons

Side Effect

Type
Approach
Metrics
Result

Misuse-based, Anomaly-based.

Host OS and/or Containerized Application.

External, Internal, or Both.

Required Resources for analysis: Software, Hardware, or Both.

Remote Attestation, Filtering and Introspection, Rule-based, or ML-based.
Real-time or Forensically.

E.g., System Calls, An Application, Sensor or Traffic Data, or Configuration Files.
E.g., Interactions with the OS, as well as Resource Usage (CPU, Memory, Network).
Detailed Analysis Steps

E.g., Logging, Alarm Activation, or Attack Mitigation.

General-Purpose, Cloud Computing, Cyber-Physical, High Performance Computing, loT.
E.g., Linux, Docker, Kubernetes.

STRIDE: spoofing, tampering, repudiation, information disclosure, DoS, elevation of privilege.
E.g., Malware, Unauthorized Access, Kernel Exploit, Binaries Modification.

E.g., Memory Leak, Log Explosion, and Network Latency.

E.g., Enhanced Verification.

E.g., Inaccurate Prediction of Anomalies.

E.g., Impact on Performance and CPU Utilization.

Case Study, Experimental study, or testing study.

Detailed Evaluation Approach

Evaluation Metrics, e.g., Performance, Detection Rate, Precision, Recall.
Detailed Evaluation Results

e Analysis procedure: This provides a detailed descrip-
tion (i.e., step by step) of the analysis procedure.

Linux containers (accessed June 2021), Docker Docker
(accessed December 2020), or Kubernetes Kubernetes
(accessed December 2020).

e Response or Reaction: The action that the monitor-

ing technique performs once an anomaly or misuse

3.3.3. Effect

3.3.2.

is detected. This can be, e.g., activating an alarm,
logging details about the anomaly, or attack mitiga-
tion. Additionally, monitoring can be either active or
passive, where the former is event-driven, monitoring
occurrences of events, and therefor not time depen-
dent. The latter, on the other hand, is based on state
inspection polling during intervals and is vulnerable
to transient attacks, i.e. attacks that occur between the
polling and is thus time dependent. However, active
monitoring is vulnerable to attacks which are outside
of the specified events, and therefore circumvent de-
tection mechanisms Pham, Estrada, Cao, Kalbarczyk
and Iyer (2014). Event based monitoring is used in
a majority of the considered papers, thus we do not
further put any emphasis on this distinction.

Applicability

Which domains are the monitoring techniques applicable
to? This category is further broken down into the following
two sub-categories:

Domain: This subcategory specifies the domain in
which the monitoring technique can be applied. The
domain can be of general purpose, cloud computing,
cyber-physical systems, high performance computing,
or IoT.

Software type: It specifies the type of software on
which the monitoring technique can be applied, e.g.,

What is the purpose of the monitoring techniques and
what are the consequences? This category includes four sub-
categories:

Targeted threats: The security threats that are targeted
by the monitoring technique. The threats can be spoof-
ing, tampering, repudiation, information disclosure,
denial of service, and/or elevation of privilege. These
security threats are known as STRIDE Howard and
Lipner (2006).

Targeted attacks: The type of the security attack that is
targeted by the monitoring technique. The attack type
can be, e.g., malware, unauthorized access, kernel
exploit, network congestion and binaries modification.

Targeted faults: The faults that are targeted by the tech-
nique, e.g., memory leak, CPU consumption, network
latency, and log explosion.

Pros and cons: A description of the advantages (e.g.,
enhanced verification) and disadvantages (e.g., inac-
curate anomaly prediction) of the monitoring tech-
nique.

Side effect: It specifies the impact of the monitoring
technique on some quality aspects or resources, such
as performance and CPU utilization.

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 6 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

Monitoring of Container-Based Virtualization Environments
1 .
I Detection Anomaly-Based Misuse-Based
Strategy
2 . —
I Analysis Remote Filtering and
Strategy Attestation Introspection Rule-Based ML -Based Rule-Based ML-Based
Monitored
Object H&C H&C H&C C C C H&C H&C C
Targeted
T STRIDE T TIE TD TD TRD D TS STD TD TD STD IDE IDE
Threats
i Original &
Application o Lo ofe O B, Ko O O (Y Ko ofe ofe ofe oke
omain
Monitoring
Techniques MT1 MT2 MT3 MT4 MT5 MT6 MT7 MT8 MT9 MT10 MTI11 MT12 MT13 MT14 MT15
(MT)
Analysis Required Ti d Analysi Collected
equire: ime an nalysis
Chars. 8 Resources O | ocation - & Input @ Measures
Table Il
Pros
EcOnsg EE® ® ® ® ® ® ® ® © 6 ® ©®© OOE® ® ®
Table IV ©OCC, 0 6 © © © 60 6B B 6 6 ©S) © ©
E Evaluation » Case - Experimental or Testing o Case - Experimental or Testing & Experimental or Testing
Table V ;\ Study x Study _\ Study x Study x Study
‘?j% General Purpose Q Cloud Computing % Cyber-Physical @ High Performance Computing
Legend
Containerized Application Spoofing, Tampering, Repudiation, Info Disclosure,
biost - or Service STRIDE Denial of Service, Elevation of Privilege

Figure 3: CONSERVE Framework for the Selection of Container Monitoring Techniques

3.3.4. Evaluation

How is the technique evaluated and what are the evalu-
ation results? This category describes the type of evaluation
that is performed on the monitoring technique, which can
be a case study, experimental, or testing study. Moreover, it
details the evaluation approach together with the evaluation
metrics (e.g., performance or detection rate) and results.

4. The Framework: CONSERVE

In this section we present CONSERVE (see Figure 3), a
top-down selection framework for supporting the selection
and implementation of monitoring techniques of container-
based virtualization environments.

First, the framework supports the selection process by
assisting the identification of candidate monitoring tech-
niques applicable to the problem or task at hand (level /
Detection Strategy to level 5 Original Application Domain
in Figure 3). In particular, to find out which monitoring
techniques are applicable to a given problem, the framework
questions whether the needed detection strategy is misuse-
or anomaly-based. After that, for each detection strategy the
framework details the analysis strategies that can be used and
the objects in the container-based virtualization environment
that can be monitored. The analysis strategies can be remote
attestation, filtering and introspection, rule-based, or ML-
based. The monitored objects can be the host, containerized
application or service, or both. The framework further lists

the security threats and attacks that need to be targeted, and
describes the domains for which the monitoring techniques
were originally designed and applied. By going through
these level, a set of candidate monitoring techniques can
be identified and selected for the problem at hand (level 6
Monitoring Techniques MT).

Second, the framework supports an objective decision-
making process for an optimal selection based on comparing
the following details (level 7 Analysis Characteristics to
level 9 Evaluation in Figure 3):

e characteristics of the analysis strategy, including the
required analysis resources, analysis location and
time, analysis input, and collected measures (see
Table 3),

e pros and cons that arise from the adoption of the
monitoring techniques (see Table 4), and

e type, metrics, and result of the evaluation that is
conducted to assess the performance of the monitoring
techniques (see Table 5).

In the following, we first provide details on the detection
and analysis strategies in subsection 4.1. After that, we de-
scribe the monitoring techniques in subsection 4.2. Finally,
we describe how the CONSERVE framework can be used,
and provide an example scenario in subsection 4.3.

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 7 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

4.1. Detection and Analysis Strategies

Misuse-based detection identifies defined suspicious
patterns, or signatures, within the analyzed data of the
system to be protected. These techniques can identify known
attacks with an acceptable accuracy and they tend to produce
few false alarms Garcia-Teodoro, Diaz-Verdejo, Macia-
Fernandez and Vazquez (2009). However, this detection
strategy does not provide means for detecting unknown
intrusions Garcia-Teodoro et al. (2009).

Anomaly-based detection involves the estimation of the
normal behavior of the system that needs to be protected,
and the identification of unexpected events by checking
whenever a given observation deviates from the normal
behavior Garcia-Teodoro et al. (2009). Anomaly-based de-
tection enables the detection of previously unknown intru-
sions. However, the rate of false positive alarms is usually
higher compared to misuse-based detection systems Garcia-
Teodoro et al. (2009).

The following analysis strategies can be used when
adopting the anomaly- or misuse-based detection strategy:
remote attestation, filtering and introspection, rule-based,
and ML-based analysis.

e Remote attestation is a process by which a software
application certifies its verification of certain security
criteria to remote parties Haldar, Chandra and Franz
(2004). It is used to attest different properties of a
software and verify its integrity and behavior. The
application that is required to certify itself sends a
unique hash of its executable created and signed by
the Trusted Platform Module to the remote party.
The remote party then verifies the signature of the
application’s hash prior to approval of the software.
Eventual verification failures are further treated as
anomalies.

e Filtering and Introspection involves filtering and an-
alyzing the interaction between the software applica-
tion and the host OS. Every application or program
specifies a set of system call sequences that it can pro-
duce. Analyzing the number and sequence of system
calls can provide an indication of normal or abnor-
mal system behavior Forrest, Hofmeyr, Somayaji and
Longstaff (1996).

e Rule-based analysis involves using a set of rules which
capture the normal behavior and expected activities of
applications. This set of rules is then used to identify
anomalous behaviors Lunt, Jagannathan, Lee, White-
hurst and Listgarten (1989). The rules can be defined
by an administrator or learnt via the use of an algo-
rithm.

e ML-based analysis involves the use of machine learn-
ing techniques for identifying malicious activities. In
supervised learning, a ML model is trained to learn the
malicious behavior (classification). In unsupervised
learning, a ML model is used to identify patterns
and eventually anomalies in data through clustering.

An analysis using supervised learning significantly
outperforms an analysis using unsupervised learning
if the test data contain no unknown attacks Laskov,
Diissel, Schifer and Rieck (2005).

4.2. Selection of Container Monitoring Techniques

We use the CONSERVE framework to support the se-
lection process of monitoring techniques based on the pre-
viously described detection and analysis strategies.

4.2.1. Anomaly-based Detection and Remote
Attestation Analysis

e MT1: De Benedictis and Lioy De Benedictis and Lioy
(2019) propose DIVE, a technique based on anomaly-
based detection and remote attestation analysis for
Docker containers. DIVE exploits remote attestation
to verify software integrity and correct the behavior
of nodes in cloud applications at run-time. It monitors
the host and software running in the containers.

DIVE targets tampering threats and attacks e.g., by
launching malicious scripts and code, service config-
urations and binary modifications, and starting new
processes. The characteristics (i.e., required resources,
analysis location and time, analysis input, and col-
lected measures) of the analysis strategy are presented
in Table 3.

DIVE consists of three main components, namely ver-
ifier, attester, and infrastructure manager. The infras-
tructure manager starts the remote attestation process
and sends a list of containers and hosts to the verifier.
Whereafter the verifier contacts the attester and asks
for integrity reports. After that, the verifier checks
the measures belonging to the containers of interests
against a white-list. Finally, the verifier returns the in-
tegrity verification result to the infrastructure manager
which is continuously keeping track of the containers
and hosts. The infrastructure manager can terminate a
compromised container or reboot the whole system if
the host OS is compromised.

4.2.2. Anomaly-based Detection and Filtering &
Introspection Analysis

Adopting a monitoring technique based on these strate-
gies leads to two options, which depend on the STRIDE
security threats that need to be targeted.

There are two techniques that support the monitoring of
both the containerized applications (or services) and the host
OS, as detailed below:

e MT2: SPEAKER Lei et al. (2017) is a general-
purpose non-intrusive technique for enhancing the
efficiency of the monitoring and analysis of con-
tainerized applications based on Linux containers.
SPEAKER can effectively reduce the attack surface
by removing unnecessary system calls that may be
exploited by malicious processes in the container.

For a given application container, SPEAKER uses
a tracing module for profiling the available system

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 8 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

calls in a booting phase and a running phase. The
tracing module shares the system call lists with a slim-
ming module, which is responsible for constraining
the available system calls when the container boots up
and runs.

MT3: A general-purpose non-intrusive malware de-
tection and analysis technique for Docker containers
is proposed by Kalimov et al. Khalimov et al. (2019).
It employs containers as sandboxes for tracking and
introspecting system calls (syscalls) to the host kernel.

This sand-boxing technique targets tampering threats
and attacks, such as malicious code and network in-
trusion. This technique records and logs information
about the malware behavior by using SystemTap Sys-
temTap (accessed December 2020). SystemTap is an
open source software infrastructure that simplifies the
gathering of information about the running activities
in a Linux system. It also enables altering the values
of syscall parameters, which enables this techniques
to effectively hide the artifacts of the environment
from the malware. In summary, this technique guaran-
tees that the containerized solution deceives sandbox
evasion by artifact obfuscation, network restructuring,
and system call introspection.

4.2.3. Anomaly-based Detection and Rule-based

Analysis

ContainerDrone uses the Simplex architecture Sha
(2001) to provide attack-resilience. In particular, a
container-controller and a host-controller are pro-
vided. A safety-monitor runs on the host control
environment and keeps monitoring the output from
both controllers. When a security violation is detected,
the monitor switches to a safety controller to mitigate
the attack and prevent further damage. The safety
controller is robust and runs a limited number of
modules that are critical to the correct functioning of
the system. To protect the CPU from DoS attacks, the
technique restricts the access of the container control
environment to the CPU using cgroups and Docker
capabilities. To protect the memory, the technique
uses MemGuard Yun, Yao, Pellizzoni, Caccamo and
Sha (2013). MemGuard ensures that each CPU core
has a reserved memory bandwidth and does not
access the memory exceeding a certain rate. Finally,
the technique protects the communication between
the component of the system from DoS attacks. In
particular, sensor data and user inputs are reviewed
by the container and host controllers. Moreover the
network stack of the two controllers are separated. The
container controller is located in a sandboxed network
space where it does not have access to Internet,
and can only communicate with the host controller
through a specified interface.

There are two techniques that support the monitoring of There is one technique that supports the monitoring of
both the containerized applications (or services) and the host containerized applications or services. This technique adopts
OS. two analysis strategies; rule-based and ML-based.

e MT4: Mattetti et al. Mattetti et al. (2015) present e MT6: Zou et al. Zou et al. (2019) propose a non-

LiCShield for monitoring and securing Linux con-
tainers in cloud computing systems. LiCShield targets
tampering, information disclosure, and elevation of
privilege threats. Examples of targeted attacks are:
kernel exploits, attacks on shared kernel resources,
misconfigurations, malicious modules, and data leak-
age. LiCShield automatically creates security profiles
protecting the execution of a container on the host and
in the container. This technique observes the execution
of the activities and operations in a training envi-
ronment to automatically define rules describing the
expected activities of containers. LiCShield monitors
the security of containerized applications by tracking
their execution and generating profiles of kernel secu-
rity modules which can restrict the capabilities of the
containers when anomalies are detected. As a result,
the execution and propagation of illegal operations
and activities is blocked.

MTS: Chen et al. Chen et al. (2019) present Con-
tainerDrone, a container-based DoS attack resilience
and monitoring technique for realtime cyber-physical
systems using Docker application containers. This
technique targets tampering and DoS security threats.
Moreover, it targets safety violations caused by DoS
attacks.

intrusive online container anomaly monitoring tech-
nique for Docker containers. This technique uses the
optimized isolation forest algorithm (iForest) to cal-
culate an anomaly value of the resource usage rates
of each container on the host machine. The technique
can automatically set the monitoring time in order to
reduce monitoring delay and system overhead. More-
over, it can locate the cause of an anomaly by ana-
lyzing the log of the container. This technique targets
tampering and DoS security threats and is designed to
defeat network congestion and attacks. This technique
also targets several faults such as endless CPU loop or
spin lock, memory leak, memory overflow, improper
disk scheduling, and log explosion.

In the host machine is a monitoring agent that collects
data on the resource utilization rate of the monitored
container. The collected data are stored in a mon-
itoring storage module which sends the data to an
anomaly detection module. The anomaly detection
module checks the received data for abnormality using
an iForest algorithm. It calculates the anomaly value
and identifies the anomalous resource metric when
the anomaly value exceeds a certain threshold. The
abnormal container information are then sent to an
anomaly analysis module which firstly obtains the log

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 9 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

of the abnormal container from the host, and secondly
analyzes the log for locating the cause of the anomaly
in the container.

4.2.4. Anomaly-based Detection and ML-based
Analysis
In addition to the technique of Zou et al. Zou et al.
(2019) that we described in the previous paragraph, there are
two techniques that support the monitoring of containerized
applications or services.

e MT7: An anomaly detection technique that is used
to detect and diagnose anomalies in container-based
microservices is proposed by Du et al. Du et al.
(2018). This technique monitors and analyzes real-
time performance data of microservices running in
a cloud environment. The targeted security threats
are tampering, repudiation, and DoS. Moreover, this
technique addresses service level agreement viola-
tions and fault injections. The targeted faults are CPU
consumption, memory leak, network package loss,
and network latency increase.

This technique includes three modules. First, a mon-
itoring module that obtains performance data of the
monitored container including CPU, memory, and
network metrics. Second, a data processing module
based on a set of ML classification models is used
for the detection of anomalies. Third, there is a fault
injection module which simulates service faults and
collects performance data representing both normal
and abnormal conditions. When an anomaly is de-
tected in a microservice, then the data of all the
containers running in this microservice are diagnosed
using a dynamic time warping algorithm to locate the
anomalous container. The prototype of the proposed
detection technique is deployed on the orchestration
system Kubernetes Kubernetes (accessed December
2020).

e MTS: DockerAnalyzer is a technique for monitoring
software executions in microservices-based applica-
tions Fourati et al. (2019). This technique also iden-
tifies of the root cause of an abnormal behavior. It
targets DoS and resource saturation attacks.

This technique first collects data related to resource
utilization and application performance such as CPU
and memory usage, and application response time.
A Sysdig Sysdig (accessed December 2020) moni-
toring component is used to filter the collected data
and identify violations that need to be analyzed. An
anomaly detector is invoked to check these violations
and find out whether they are caused by normal re-
source saturation based on an increase of the number
of requests or by an anomaly. In order to do so, the
anomaly detector uses an outlier detection algorithm.
In case of an anomaly, an anomaly detector based on
a ML decision tree model is used to search for and

identify the root cause of the anomaly which can be
a specific request consuming the resources, virtual
machine problem, or container problem.

There are five techniques that support the monitoring of
both the containerized applications (or services) and the host

e MT9: Gantikow et al. Gantikow et al. (2020) propose

a container monitoring technique using neural net-
works for high performance computing environments.
This techniques targets tampering and spoofing threats
as well as mimicry attacks.

A one layer Long Short Term Memory (LSTM) neural
network is used to detect anomalies in system calls
distribution. The neural network is trained to predict
the distribution of system calls at time ¢ + 1 based
on the distribution at time ¢. In particular, the devi-
ation between the prediction and the actual value is
measured using the Root Mean Square Error (RMSE).
After calculating the RMSE, the distribution of system
calls is classified into either a normal or anomalous
based on a predefined threshold value. Furthermore,
the LSTM neuronal network can predict the next file
system path that will be used by a system call based on
the path of the currently used file system. This is done
by determining the deviation between the expected
and the actual file system path. Consequently, the file
system path is classified into normal or anomalous
based on a predefined threshold value. As this tech-
nique analyses system calls using Sysdig Sysdig (ac-
cessed December 2020) it provides native container
support.

MT10: Abed et al. Abed et al. (2015) propose a non-
intrusive technique for realtime monitoring of applica-
tions within Linux containers running in a standalone
or cloud-based environment.

This techniques targets spoofing, tampering, and DoS
attacks via e.g., malware injections, OS compromise,
file system access, and brute force attacks. The used
analysis strategy is a sliding window and frequency-
based bags of system calls (BoSC) analysis which
keeps track of the frequencies of the system calls in
a specific window of size k, where k is the number
of monitored system calls at each epoch. This tech-
nique uses Linux capabilities, such as strace which
reports system calls including information about their
originating process ID, arguments, and return values.
By tracking these system calls, the technique learns
the behavior of the containerized applications and
determines potential anomalies in the environment.

The proposed technique does not require any prior
knowledge of the running application in the container,
neither does it require any change to the container
nor the host kernel. The technique first runs in a
training mode where a classifier adds the new BoSC

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier Page 10 of 24

Table 3

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

Detailed Characteristics of the Analysis Strategy of Each Monitoring Technique (MT)

MT Required Resources Location & Analysis Input Collected Measures
(SW: software, HW: hardware) Timing

MT1 SW: Linux capabilities and Integrity Offboard Platform configuration regis- Integrity verification results of the input
Measurement Architecture (IMA) Sailer, and ters and IMA measures data
Zhang, Jaeger and Van Doorn (2004) Realtime
HW: Trusted Platform Module

MT2 SW: Linux capabilities, Secure Comput- Offboard A list of system calls issued the ID of the originating processes, argu-
ing Mode (Seccomp) and by the running processes of a ments, and return values

Realtime container to the host kernel

MT3 SW: Linux capabilities and SystemTap Offboard A list of system calls issued the ID of the originating processes, ar-
and by the running processes of a guments, and return values, input/output
Forensically container to the host kernel activity, network traffic, and memory dumps

MT4 SW: SELinux SELinux (accessed Decem- Offboard A Dockerfile which is built into A list of performed kernel operations during
ber 2020), SystemTap SystemTap (ac- and a Docker image and then run container creation and execution together
cessed December 2020), AppArmor Ap- Realtime in a Docker container with their resources and required permis-
pArmor (accessed Janunary 2021) sions

MT5 SW: Linux capabilities and Mem- Onboard Sensor data and user inputs. CPU core number, CPU utilization, Memory
Guard Yun et al. (2013) and Also, network traffic and re- bandwidth, interval between two consecu-

Realtime ceived threads tive output received by the host controller

MT6 SW: InfluxDB InfluxDB (accessed Offboard Running processes of a con- Resource utilization: Container’s ID, time,
Janunary 2021), and Apriori and tainerized application or service CPU usage, memory usage, disk read/write
algorithm Agarwal, Srikant et al. Realtime speed, and network speed
(1994)

MT7 SW: InfluxDB InfluxDB (accessed Ja- Offboard Running processes of con- Resource usage (CPU, Memory, Network)
nunary 2021), cAdvisor cAdvisor (ac- and tainerized services and performance data of a specific micro-
cessed December 2020), Heapster Heap- Realtime service
ster (accessed December 2020), and dy-
namic time warping algorithm

MT8 SW: Sysdig Sysdig (accessed December Offboard Running processes of con- Data related to number of service requests.
2020) and tainerized services CPU usage, memory usage, and application

Realtime performance (i.e., response time).

MT9 SW: SysdigSysdig (accessed Decem- Offboard A list of system calls issued the ID of the originating processes, argu-
ber 2020), Long Short Term Memory and by the running processes of a ments, and return values. Also, the used file
(LSTM) neural network Realtime container to the host kernel and directory paths

MT10 SW: Linux capabilities (Strace) Offboard A list of system calls issued the ID of the originating processes, argu-

and by the running processes of a ments, and return values
Realtime container to the host kernel
MT11 SW: Linux capabilities (Strace) Offboard A list of system calls issued the ID of the originating processes, argu-
and by the running processes of a ments, and return values
Realtime container to the host kernel

MTI12 SW: CRIUCRIU (accessed Janunary Onboard A list of system calls issued the ID of the originating processes, argu-
2021), Sysdig Sysdig (accessed Decem- and by the running processes of a ments, and return values
ber 2020) Realtime container to the host kernel

MT13 SW: Linux capabilities (Strace) and Sys- Offboard A list of system calls issued the ID of the originating processes, argu-
dig and by the running processes of a ments, and return values

Realtime container to the host kernel

MT14 SW: Linux Capabilities, SysdigSysdig Offboard A list of system calls issued the ID of the originating processes, argu-
(accessed December 2020), FalcoFalco and by the running processes of a ments, and return values. CPU load, mem-
(accessed December 2020) Realtime container to the host kernel ory usage, network traffic, and block 1/0

MT15 SW: Restricted Boltzmann Machine Offboard Configuration details of appli- Container run-time statistics: Number of
(RBM) algorithm and cation workloads running in container volumes mapped to the container,

Realtime containers: name of the con- user access privileges, and authentication

tainer instance, invoker strat-
egy, container interceptor set-
tings, container instance cache,
locking approach, security do-
main, and cluster configuration

mechanisms. Also, number and sorts of
network interfaces, network access, inter-
process communications, and resource allo-
cation limits.

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 11 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

Table 4
Pros, Cons, and Side Effect of Each Monitoring Technique (MT)
MT Trade-off Reported Side effect
Pros Cons
MT1 e Enables integrity verification of the host, e Does not cover the full range of software attacks, such e Performance: Low im-
container engine, and running containers. as detecting in-memory manipulations of code or data. pact
e Provides the possibility to distinguish which e The white-list should be updated each time the host e CPU: impact is pro-
container is compromised. system is updated, or a false positive will be triggered. portional to the number
e Improves the remote attestation efficiency. e It introduces a lock-in on the “Device Mapper” storage of running containers.
driver for Docker. e Memory: low impact.
e Its dependency on OpenAttestation OpenAttestation
(accessed Janunary 2021) makes it non-portable on hosts
equipped with Trusted Platform Module (TPM) 2.0.
MT2 e Reduces the system call interface and incurs e Incomplete system call tracing. e Performance: Low im-
almost no performance overhead. e Risk of system call misuse attacks e.g., mimicry attack. pact
MT3 e Uses sandboxing to analyze malware and e Risk of fingerprinting through different sources that e N/A
rigorously record its behavior. malware can easily be found.
MT4 e Low overhead on the production environ- e Risk of blocking legitimate operations that were never e Performance: Low im-
ment. observed in the training environment. pact
MT5 e Protects from Denial of Service (DoS) at- e N/A e CPU: Low impact.
tacks on CPU, memory, and communication.
MT6 e Low performance overhead. e Inaccurate prediction: false positives and false negatives. e N/A
MT7 e Includes performance monitoring. e Inaccurate prediction: false positives and false negatives. e N/A
MT8 e Identifies the root cause of the abnormal e Inaccurate prediction: missing outliers detection. e N/A
behavior.
MT9 e Helps preventing mimicry attacks. e Cannot be used alone since the reduction to file system e Performance: high im-
paths leads to too much data not being analyzed. pact when the pro-
e Inaccurate predictions: false positives. cessed dataset is large
MT10 e Requires less storage space compared to e Inaccurate prediction: false positives. e Performance: Low im-
sequence-based approaches while providing e Risk of mimicry attacks. pact
better accuracy.
e Computationally manageable and does not
require limiting the application programming
interfaces.
e No information disclosure about the nature
of the application running in the container.
MT11 e Scalability: the ability to run multiple Docker e Inaccurate prediction: false positives and false negatives. e CPU: Low impact
containers and a single monitoring IDS.
MT12 e Helps keeping the stateful containers up and e Requires manual checks for the updates to the applica- e Performance: Low im-
running in a safe state. tions within the container. pact
MT13 e Limits intrusion dispersion by enabling con- e Inaccurate prediction: false positives. o Performance: Low im-
tainer live migration between different man- e Risk of mimicry attacks. pact
aged cloud-hosts or rolling back to a safe state.
e Requires less storage space compared to
sequence-based approaches while providing
better accuracy.
e Computationally manageable and does not
require limiting the application programming
interfaces.
e No information disclosure about the nature
of the application running in the container.
MT14 e Low performance overhead. e The detection of a Buffer Overflow is not possible. o N/A
MT15 e Increases the possibility of identifying zero- e Inaccurate prediction: false positives and false negatives e N/A

day vulnerabilities.

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 12 of 24

Table 5

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

Evaluation of Each Monitoring Techniques (MT) as Reported by the Studies

MT Type

Evaluation Metric

Result

MT1

K

e Performance

It enables run-time verification of container applications at the cost of limited overhead. The
integrity verification time increases with the number of active containers. Also, container integrity
verification significantly impacts the CPU utilization at the verifier side, if compared to host-only
attestation. Memory consumption at the increase of running containers is not affected as much.

MT2

o Effectiveness
e Performance

It can successfully reduce more than 50% and 35% system calls in the running phase for the data
store containers and the web server containers, respectively, with negligible performance overhead.

MT3

o Effectiveness

Docker containers are a promising option for a sandbox. Some artifacts can be hidden such as
network artifacts, the Linux capabilities profile and proc file. However, this option comes at the
cost of new detection artifacts which make containers subject to fingerprinting through different
sources that malware can easily find.

MT4

e Effectiveness
e Performance

It is efficient to prevent the targeted attacks, while having almost no overhead on the production
environment. It is recommended to deploy the approach with technologies like Host-based Intrusion
Detection Systems (HIDS) to achieve increased protection while optimizing the performance.

MT5

o Effectiveness

(1) In the case without MemGuard, the drone starts to drift right after the Bandwidth task is
launched by the attacker and results in a crash shortly after. When the MemGuard is enabled, the
drone oscillates for a short time but then managed to stabilize itself. (2) in case of a UDP attack, the
attitude error control kills the received thread on host controller. (3) in case of security monitoring
of safety attacks on the complex controller, the security monitor detects that the output from the
container controller has not received for some time and kills the received thread and switches to
the output from the safety controller

MT6

e Detection rate
e False alarm rate

It can accurately detect anomalies in the container with small performance overheads: The
optimized iForest has an acceptable small false alarm rate and high detection rate. The optimized
iForest has a better performance than the compared detection methods. Overall, optimized iForest
has better anomaly detection results compared to other two compared methods.

MT7

Precision/Recall
e F1 score

The detection performance of the anomalous service is excellent for most of the classifiers with
measure values above 0,9.

MT8

e Resource usage
e performance

The results demonstrate the effectiveness of the proposed technique in reducing resource usage
compared to Kubernetes. Also, the technique helps also to improve the performance of the
application comparing to Kubernetes by improving the response time to resource scaling requests.

MT9

Effectiveness
e Performance

File system path analysis using neural networks has been shown to be a good complement to a
general approach such as system call distribution analysis, because by evaluating the system call
parameters mimicry attacks can be prevented. This method might cause performance problems
due to the larger number of processing steps compared to the system call distribution analysis for
workloads with many file system accesses.

MT10

e True positive rate
o False positive rate
e Complexity

Results show a high detection rate of 100% is easily achievable using a low detection threshold of
10 mismatches per epoch. The false positive rate is 2%. The algorithm used is linear in the size of
the input trace. The Time Complexity (TC) for looking up an index for a given system call is O(1)
operation. The TC for updating the database with a new Bag of System call is O(1) operations.
The TC for comparing the database before and after an epoch k, and computing the similarity
metric, is O(nk), where nk is the size of the database after epoch k. Hence, the algorithm used is
linear in the size of the input trace. The TC of running an epoch of size S is O(S + nk).

MTI11

e Sensitivity
e False positive rate

The IDS system boasts of high values of sensitivity for all the datasets tested in the range of
96-100%, and the False Positive Rate is very low, ranging from 0-14%.

MT12

e Performance

The Time Machine added time overhead about 17 milli-second per request (SQL query).

MT13

o Effectiveness
e Performance

Attack dispersion without the Moving Target Defense (MTD) is massive. With the increase of the
MTD response-rate, the attack dispersion is much less and the impact is limited. The impact on
the application performance is negligible. The migration process takes less than 0,05 sec in most
cases. The impact of intrusions is extremely limited and the intrusion dispersion rate is minimum.

MT14

o Effectiveness
e Performance

It is effective in many attack scenarios and comes at a low performance overhead cost (Sysdig with
full capture overhead is 5,45% and for Sysdig with filter is 2,02%).

MT15

e True positive rate
e False positive rate

A relatively high-classification rate (> 0,929) for some of the container security issues identified by
the algorithm for the test records generated based on container profile. The classification rate can
be improved further if more records are used to train the algorithm.

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 13 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

to the normal-behavior database. If the current BoSC
already exists in the normal-behavior database, its
frequency is incremented by one, otherwise, the new
BoSC is added to the database with the initial fre-
quency of one. A continuous training is applied during
detection mode to further improve the accuracy of the
technique.

Once trained, the technique runs in a detection mode
where a sliding window is used to check if the current
BoSC is present in the normal behavior database,
if not a mismatch is declared. Moreover, a trace is
declared anomalous if the number of mismatches ex-
ceeds a certain threshold.

MT11: Srinivasan et al. Srinivasan et al. (2018) pro-
pose a general-purpose technique for real-time mon-
itoring of applications running in Docker containers.
This technique targets tampering and denial of service
security threats, such as malware, Trojan attacks, and
SQL injection.

Given an application running within a container, this
technique uses a system call-based approach for the
detection of anomalies and hence reports intrusions
when they occur in real-time. The technique works in
two modes: a normal and a detection mode. Based on
these two modes, safe and unsafe sequences of system
calls are maintained as n-grams and the probabilities
of occurrences of these n-grams are calculated. The
overall relative n-gram probabilities of safe sequences
are stored in a database. The technique checks each n-
gram probability against the probabilities stored in the
database. If the n-gram is not present in the database,
or if the difference between the probabilities of the ob-
served and stored n-grams is beyond a certain thresh-
old, the technique flags for a possible anomaly. When
the number of the flags reaches a specific threshold,
the technique considers the monitored activity as ma-
licious and provides options to either continue running
the container or stop the execution. The threshold is
calculated by assessing the highest difference between
the observed n-grams probabilities during the normal
mode and detection mode.

MT12: Time Machine (TM) Sayed and Azab (2019)
is a general-purpose container monitoring technique
that can be used to identify abnormal behaviors and
malicious activities in Linux containers, in a way that
keeps containerized stateful applications up and run-
ning in a safe state. This technique targets both tamper-
ing and DosS threats. In particular, it avoids logic bomb
activation in mission critical systems. Logic bombs
are a hidden code snippets that are added to the source
code on purpose to enable input-triggered activation
of a list of malicious features.

Given a container of interest, the TM creates a shadow
container (i.e., clone) of that container. Then, TM runs
these two containers in two parallel environments;

realtime running the original container and delayed-
time running the shadow container. The incoming
system-call traffic to realtime container is monitored.
The monitoring strategy is based on the bag of system
call (BoSC) and sliding window classification analy-
sis, which checks whether or not a BoSC is present in
a normal-behavior database. If the traffic results in a
normal behavior, then the traffic is forwarded to the
shadow (i.e., delayed) container and a green flag is
declared. Otherwise, if the traffic results in a malicious
behavior, then the TM blocks the calls from reaching
the shadow container, clones the shadow container
to the real container, saves the calls that resulted an
anomalous behavior in anomaly profile to skip these
calls in the future, and declares a red flag to alert the
admin of the system.

MT13: Abed et al. Abed et al. (2020) propose a re-
silient intrusion detection and resolution technique for
cloud-based systems. This technique targets spoofing,
tampering, and DoS attacks via e.g., malware injec-
tions, OS compromise, file system access, and brute
force attacks. This technique extends the real-time
behavior monitoring mechanism of Abed et al. (2015).
In particular, it uses a Moving Target Defense (MTD)
mechanism based on run-time container migration
to quarantine malicious containers and reduce attack
propagation. Moreover, to avoid zero-day attacks, the
technique supports random live migrations between
running containers to obfuscate its execution behavior.

The system uses Sysdig tool Sysdig (accessed Decem-
ber 2020) to trace system calls from the containers
to the host kernel. When the system detects a misbe-
havior, the moving-target defense reacts as follows: in
case of a stateful application, the system immediately
migrates the affected container running the stateful
application to a quarantine zone for further inspection.
In case of a stateless application, the system rolls-back
the misbehaving container to a previous safe state.
The proposed technique was tested on an Apache
Hadoop Apache (accessed January 2021) cluster run-
ning Docker containers.

4.2.5. Misuse-based Detection and Rule-based

Analysis

There is one technique that supports the monitoring of
both the containerized application and the host OS.

e MT14: Gantikow et al. Gantikow et al. (2019) pro-

pose a general-purpose rule-based security monitor-
ing technique for enhancing the security of container-
ized environments, such as Docker, rkt and LXC. This
technique targets information disclosure, DoS, and
elevation of privilege security threats. In particular, it
detects a variety of misuse and attacks, such as unau-
thorized access, unauthorized launch of applications,
container breakout, unexpected network connections,
and loading of kernel module.

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 14 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

This technique is based on two open source tools;
Sysdig Sysdig (accessed December 2020) which is
a universal system visibility tool with native support
for containers, and Falco Falco (accessed December
2020) which is a behavioral activity monitoring sup-
port for containers. First, Sysdig is used to capture and
process the captured system call events. After that,
Falco is used to detect suspicious behavior based on
a predefined set of rules. In case of a suspicious be-
havior, an incident notification is issued using logging
frameworks, messengers, or e-mail.

4.2.6. Misuse-based Detection and ML-based Analysis
There is one technique that supports the monitoring of
containerized applications or services.

e MT15: Kamthania Kamthania (2019) proposes a
general-purpose ML technique for the identification of
malicious patterns and zero-day vulnerabilities in con-
tainer production environments which can be applied
to any container platform complying to the Open Con-
tainer Initiative specifications OCI (accessed January
2021). This technique uses the deep learning restricted
Boltzmann machine (RBM) algorithm Ackley, Hinton
and Sejnowski (1985). This technique targets infor-
mation disclosure, DoS, and elevation of privilege
security threats. In particular, it deals with unbounded
network access from containers, insecure run-time
configurations, rogue containers, improper user access
rights, and embedded clear texts.

Given an application running in a container, the RBM
derives the profile and configuration details of the
monitored container. Next, it creates a behavioral
knowledge map of the container by collecting con-
tainer statistics at run-time (e.g., the number and types
of network interfaces, network access, inter-process
communications, and resource allocation limits). Af-
ter that, the machine learning algorithm builds the
complete security profile of the container under test
which, in turn, is used to identify container security
threat patterns. The identified malicious patterns can
be used by container orchestration tools (e.g., Kuber-
netes) to make decisions on the current state of the
production containers.

4.3. Using the CONSERVE Framework

In this section, we first describe how CONSERVE can
be used to perform the selection of container monitoring
techniques. Second, we provide an application scenario.

Figure 4 contains a flow diagram and pseudo-code show-
ing how the CONSERVE framework can be used. As input,
a container-based environment (CBE) has to be monitored
in order to enhance its resiliency to security threats. CON-
SERVE supports the selection of a monitoring technique for
CBE through two steps:
Step A: Identification of candidate monitoring techniques.
Step B: Making of an objective and optimal selection (i.e.,
identifying the most suitable technique).

Step A. To identify a set of candidate monitoring techniques
for CBE, the detection strategy can be selected first. There
exist two detection strategies to select from: anomaly-based
or misuse-based. Based on the selected detection strategy,
we get a list of candidate monitoring techniques out of the
available fifteen (see Figure 4, flow chart: level 1, pseudo-
code: lines 12-14).

After selecting the detection strategy, the analysis strat-
egy can be selected. If anomaly-based detection was selected
previously, then as analysis strategy there exist four options
to select from: remote attestation, filtering and introspection,
rule-based, or ML-based. On the other hand, if misuse-based
detection was selected, then as analysis strategy there exist
two options to select from: rule-based or ML-based. Based
on the selected analysis strategy, we identify an updated (i.e.,
filtered) list of candidateMTs (flow chart: level 2, pseudo-
code: lines 16-19).

Next, the monitored object can be selected. There are
three options to select from: monitoring the host, container-
ized application/service, or both of them. Once we select
the monitored object(s), we update the list of candidateMTs
(flow chart: level 3, pseudo-code: lines 21-23). After that,
the targeted security threats can be selected. The targeted
threats can be up to six threats according to the STRIDE
model Howard and Lipner (2006). Based on the selected tar-
geted threats, the list of candidateMTs gets further updated
(flow chart: level 4, pseudo-code: lines 25-27).

Next, the original application domain can be selected.
There are four domains to select from: general purpose,
cloud computing, cyber-physical systems, or high perfor-
mance computing. Based on the selected domain, we update
the list of candidateMTs (flow chart: level 5, pseudo-code:
lines 29-31). As a result of Step A, a list of candidateMTs is
identified (flow chart: level 6, pseudo-code: line 34).

Step B. In this step, CONSERVE supports an objective
decision-making for an optimal selection. In particular, for
each candidate monitoring technique identified in the pre-
vious step (i.e., Step A), CONSERVE reports its detailed
analysis characteristics, pros and cons, and evaluation results
(flow chart: level 7, 8, and 9, pseudo-code: lines 41-48).
Based on the details provided in Step B, the most suitable
monitoring technique for CBE can be identified and hence
selected (flow chart: output, pseudo-code: line 52).

4.3.1. An Application Scenario

Bob, a system architect, needs to use a container mon-
itoring technique to secure containerized applications run-
ning on a Vehicle Computational Unit (VCU). A VCU is
a powerful piece of hardware that typically comes with
multiple processors to enable computationally demanding
autonomous drive functions. Moreover, it provides core ve-
hicle functionality and services such as mode management,
on-board diagnostics, software download, settings manage-
ment, and connectivity. A VCU can run multiple applica-
tions on the same hardware and/or operating system. Bob
has the following two requirements that he needs to fulfill:

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 15 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

Input Container-Based Environment (CBE)

CONSERVE (Step A)
Identification of candidate monitoring
techniques for CBE

|

Level 1. Detection Strategy (DS)
!
Level 2. Analysis Strategy (AS)
¥
Level 3. Monitored Object (MO)
¥
Level 4. Targeted Threats (TT)
¥
Level 5. Original Application Domain (OAD)

!

Level 6. Candidate Monitoring Techniques |

|
CONSERVE (Step B)
Making an objective and optimal selection

| Level 7. Detailed Analysis Characteristics |

!

| Level 8. Pros and Cons |

!

| Level 9. Evaluation |

v

Output | Most Suitable Monitoring Technique for CBE |

AB = Anomaly-Based;

MB = Misuse-Based;

RA = Remote Attestation;

FI = Filtering and Introspection;
RB = Rule-Based;

ML = Machine Learning;

CAS= Containerized App or Service;

GP = General Purpose;

HPC= High Performance Computing;

candidateMTs= 15 Candidate Monitoring Techniques;

if interestedIn(DS) then
select DS = (AB || MB);
candidateMTs = candidateMTs basedOn selected(DS);

if interestedIn(AS) then

if DS = AB then select AS = (RA || FI || RB || ML);
if DS = MB then select AS = (RB || ML);
candidateMTs = candidateMTs basedOn selected(AS);

if interestedIn(MO) then
select MO = (Host || CAS || Both);
candidateMTs = candidateMTs basedOn selected(MO);

if interestedIn(TT) then

select TT = targetedThreats <STRIDE>;
candidateMTs = candidateMTs basedOn selected(TT);
if interestedIn(OAD) then

select OAD = (GP || Cloud || CyberPhys || HPC);
candidateMTs = candidateMTs basedOn selected(OAD);

get candidateMTs;

foreach MT in candidateMTs

{

info = check detailedAnalysisChars(MT);
info = info + check prosNcons(MT);

info = info + check evaluation(MT);

}

get mostSuitableMT basedOn info;

Figure 4: A flow chart (left) and pseudo-code (right) showing how to use the CONSERVE Framework

e the monitoring technique should monitor the interac-
tion between the host OS and the container, and

e the monitoring technique should target unknown at-
tacks that belong to the following security threats:
spoofing, and denial of service (DoS).

By using CONSERVE, Bob explores the different mon-
itoring techniques applicable to his problem. First, Bob
visits CONSERVE’s level 1 (Detection Strategy) and selects
anomaly-based as a detection strategy since the monitor-
ing technique must target unknown attacks. Accordingly,
techniques from MT1 to MT13 are considered as candi-
dates. Next, by looking at level 3 (Monitored Objects),
Bob excludes techniques that do not monitor the interaction
between the host OS and the container. The excluded tech-
niques are MT6, MT7, and MTS8. Last, by exploring level 4

(Targeted Threats) Bob explores the monitoring techniques
that target spoofing and DoS threats, and identifies three can-
didate monitoring techniques. These techniques are MT2,
MT10, and MT13.

To get further details on these techniques, Bob explores
CONSERVE’s level 7 (Detailed Analysis Characteristics).
Moreover, to make an objective selection, Bob explores
the trade-offs and evaluation results (levels 8 and 9). He
finds out that MT13 has a low impact on performance and
provides a mechanism that enables rolling back a container
to a safe-state. Bob considers this mechanism as important,
since the system he works on is safety-critical. Hence, Bob
considers MT13 as the most suitable monitoring technique
for addressing the problem and requirements he has at hand.

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 16 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

5. Framework Evaluation

To evaluate the CONSERVE framework, we use a mixed
methods approach employing both quantitative and quali-
tative data collection and analysis Creswell and Creswell
(2017). We use this approach because it enables the inves-
tigation of the strengths and weaknesses of the developed
framework including the social and cognitive processes sur-
rounding it. For data collection, we follow a design com-
prising a try-out task and semi-structured questionnaires (see
Section 5.1). Moreover, we adopt a sequential explanatory
strategy for data analysis Creswell and Creswell (2017). Us-
ing this strategy, we use the qualitative data to complement
as well as assist the explanation and interpretation of the
quantitative data.

5.1. Try-Out Task and Questionnaires

We create a pre-evaluation questionnaire to collect data
on participants’ highest educational degree, domain of ex-
pertise, and current occupation as well as experience in
systems security and in development or engineering of com-
puting systems. Moreover, we design a try-out task to engage
the participants in using the framework, which is necessary
to assess its strengths and weaknesses. The task challenges
the participants to select a set of container monitoring tech-
niques by using CONSERVE and based on a set of specific
requirements. Last, we create a post-task questionnaire to
collect perceptions on the ease of use, understandability,
usefulness, efficiency, applicability, and completeness of
the framework. The evaluation material, including the pre-
evaluation and post-task questionnaires, is available online'.

5.2. Participants

The target group is the entire population of people who
have a basic knowledge or expertise in engineering or de-
velopment of computing systems. The accessible population
for this study is a subset of the targeted group and identified
opportunistically via networks of collaborators and contacts
(i.e., through convenience sample). In particular, a mix of 18
researchers and practitioners are involved in the evaluation
of the framework.

Table 6 provides details about the participants and is
created based on the answers collected by the pre-evaluation
questionnaire. Seven of the participants are researchers
working in academia or research institutes, namely Chalmers
University of Technology, University of Gothenburg, Viet-
nam National University, University of Paderborn, TU Ham-
burg, and RISE Research Institutes of Sweden. The remain-
ing eleven participants are practitioners working in industrial
organizations, namely AB Volvo Group Trucks Technology,
Volvo Cars, and Nvidia.

5.3. Evaluation Procedure

Before running the evaluation, we conducted a pilot
study which helped in shaping the design of the evaluation
protocol and assessing whether it is realistic and workable.

IEvaluation Material: http://rodijolak.com/conserve

The pilot study also helped in identifying issues with the
design of evaluation protocol as well as in training the su-
pervisor of the evaluation. Based on the pilot, we concluded
that the participants would require around 90 minutes to
go through the try-out task and the questionnaires. After
running the pilot, we collected date and time preferences of
the participants for conducting the evaluation. The evalua-
tions are conducted in January and June 2021 over Zoom,
Microsoft Teams, or other online meeting tools preferred by
the participants. The first author of this article supervised
all the evaluation sessions to avoid eventual unbalance in
the assistance that the participants might have otherwise
received by the appointment of different supervisors.

For each evaluation meeting, the supervisor sent the
evaluation material to the participant and explained that the
evaluation material includes two files:

1. Evaluation Steps, which provides a step by step guide-
line for performing the evaluation. Beside presenting
the task and questionnaires, this file provides an in-
troduction to containers and the threats that targets
the containers and the objects in the virtualization
environment.

2. CONSERVE, which is used for performing the evalu-
ation task described in the Evaluation Steps file.

The supervisor was present in the meetings to assist and
guide the participants in case they have questions regarding
the evaluation process or technical problems e.g., link to pre-
evaluation questions is not working. The supervisor asked
the participants to start the evaluation by going through the
evaluation steps. On average, the evaluation sessions lasted
75+15 minutes.

5.4. Evaluation Results

To analyze the collected quantitative data, we generate
descriptive statistics including (i) percent stacked-bar charts
which display comparisons between categories of data and
highlight the relationship of constituent categories/parts to
the whole bar, (ii) precision and recall to investigate the
accuracy of the answers of the participants to the questions
of the try-out task, and (iii) Mean+SD (standard deviation)
to analyze central tendencies and dispersion. Furthermore,
we conduct an inductive thematic analysis Boyatzis (1998)
which helps to identify, analyze, and report patterns (i.e.,
themes) within the collected qualitative data. In particular,
we code the qualitative data as well as identify and analyze
themes at the explicit level Boyatzis (1998).

5.4.1. Task Results

The evaluation task comprises of three steps. In the first
step, the participants are asked to select a set of candi-
date monitoring techniques that can be used for monitoring
the security of a containerized application of a Vehicle’s
Computational Unit (more details are provided in evaluation
material). The selection should be done using CONSERVE
and based on two requirements, namely, (i) the monitoring
techniques should monitor the interaction between the host

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 17 of 24

http://rodijolak.com/conserve

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

Table 6

Participants in the Evaluation of CONSERVE.

ysiy Aian g ‘ysiy 4 ‘e8esone ¢ ‘Mo| 7 ‘MO| AJoA [:sipadXT 4

"USPOMG Ul UOWIWOD 93.89p |e403d0p-24d B sI SuliesulBu] Jo 91U

0S¢ 98'6 L8'S uoneinaq piepuels
68'1 00Tl 61t (esep [ensaur) ueayy

001 000 SLT (¥01) s8uey spiend-4a1u]

00°€ 00 00 (€0) 3y1end puyy

00T 00 st (10) apwend isid

00°¢ 00% 00°€ (e1ep jeuipio) ueipayy
00°¢ 00C 00°LT 00°¢ 00°S 00°€ Jadojpasg asemyog 90uaIdg J9ndwo) ws'g 81
00T 00C 00°CI 00°¢ 000 00°¢ Jadojpns(siemyog Suussuidug alemyog PSNLT
00T 00°¢ 00°S 00t 00C 00C 193u13u s1emyog swa3shg pue spomiaN ‘auyd 91
00°¢ 00°¢ 0001 00°¢ 00°¢ 00°¢ PRUYIY Waishg SuuesuIdug alemyos ‘ayd S
0001 00y 00¢CE 00'Y 00°€C 00°¢ PUYIY Aundsg 92U31dS J9Indwio) ws'g vl
0S°0 00'€ 0001 00t 0001 00t JouBiseq weisAg A1undsg SuussuiSug pue 9dusIdG JaIndwo?) OGN €1
000 00C 00y 00y €0 00C wspms 'q'yd Suussui3ug uoneslUNWWO) SN T
00T 00'€ 00'S 007 0001 00y JeouiBug Andsg swelsAg SunesuiBug pue 2dua1dg Jeindwio) OSIW I
000 00C 007€ 00°S 000 00C 191Y21y [ed1507] SuusauiZug d1uoileyds | ws'd o1
00y 00°¢ 00°€l 00y 00'8 00°¢ J49ui8ug AQunoag SWaIsAG pue sspompdN - "Sug Il 60
050 00C 00y 00t 000 00C uspms "a'yd 92U31dg J9Indwio) SN 80
050 00'€ 00'ST 007 00T 007 AIno9sizgA) ulypm JaduiBuz sjdidulig Supsauidug Jeindwo) ‘ayd Lo
000 00°¢ 000 00°¢ 000 00y wspms "a'yd SWIISAG pue syIomMIBN ‘auyd 90
00°1 00y 00°LC 00°¢ 00'L 00°S Jayodessay Bunssuiug pue 9dusIdG Jeindwio) ‘auyd <o
00'S 00 0001 00'% 000 00°¢ Jopea] A393en1g pue A3ojouyda) Supsauidug Jeindwo) ‘aud 0
wo 00°¢ 009 00°¢ 00T 00C uspnig "g'yd Sunssuiduz pue dusG JsIndwio) SN €0
00T 00°¢ 00°¢ 00t 000 00°¢ JUBISISSY |2Jeassy 9ouaIdg J9ndwio) SN 0
LT°0 00T 006 00y 00y 00y wspms "a'yd Suuesuidug alemyog ‘ayd 10

(sieaf) ousuiadxy | esiedxy (s1e9A) aousiiadxy LLOS1edxg (sieaf) sousuedxg | esiuedxgy uoizednad urewo(q s0i8sq #d

SISUIeIUOY) pUE UOIleZI|enuIA

SuussuiSug /auswdojpnsg swalskg

A1N29G swalsAg

Page 18 of 24

Preprint submitted to Elsevier

R. Jolak, T. Rosenstatter, M. Mohamad et al.:

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

OS and the container, and (ii) the monitoring techniques
should target unknown attacks that belong to Spoofing and
Denial of Service security threats. Moreover, we ask the
participants to describe the reasoning behind their selection.

The set from which the participants can select the mon-
itoring techniques is provided by CONSERVE and it in-
cludes fifteen techniques in total. Three monitoring tech-
niques (i.e., Abed et al. (2015); Lei et al. (2017), and Abed
et al. (2020)) fulfill the specified requirements and are there-
fore the correct ones. Table 7 shows the mean and standard
deviation values of the precision and recall related to the first
step. The mean precision of all the participants is 0.82+0.29
and the mean recall is 0.89+0.26. To explain these numbers,
we analyze the reasoning behind the selections and observe
the following:

e Human error: one participant included one false posi-
tive and one false negative in the set of candidates; and
another participant included two false positives in the
set of candidates. However, both of these participants
have correctly reasoned for their selections, which
should have consequently helped them in the selection
of the correct techniques. Accordingly, we consider
these cases as consequences of a human error.

o Misunderstanding: there are three cases connected
to some sort of misunderstanding: First, three par-
ticipants misunderstood the evaluation task. These
participants included false positives in their solutions.
After checking their reasoning, we find that they con-
sidered techniques targeting either Spoofing or Denial
of Service security threats, as opposed to the task’s re-
quirement which was on the selection of both of these
threats. Second, one participant removed one true
positive from the candidates set after discussing the
pros and cons of the technique, which is not required
at this step. Thus, we consider this case as a misunder-
standing of the task. Third, the set of candidates of one
participant has no true positives. After checking the
reasoning, we find that the participant did not take into
account the requirements defined for this step. Thus,
we consider this case as a misunderstanding of either
the evaluation task or the framework.

In the second step, the participants are asked to report the
required software and hardware components for the proper
functioning of each candidate monitoring technique in the
list of candidate monitoring techniques. Table 7 shows the
mean and standard deviation values of the precision and
recall related to the second step. The mean precision and
recall of all the participants are the same, 0.941-0.24. Indeed,
only one participant could not fetch the required software
and hardware components for the proper functioning of the
selected techniques.

In the third step of the evaluation task, we ask the
participates to select only one monitoring technique from
their list or set of candidates and provide a reasoning on
their selection. We find that most of the participants (17 out

Table 7
Precision and Recall of (Step 1) the Selected Candidate
Techniques and (Step 2) the Required Resources

Step 1 (n=18) Precision Recall Step 2 (n=18) Precision Recall
Mean 0.82 0.89 Mean 0.94 0.94
Std. Dev. 0.29 0.26 Std. Dev. 0.24 0.24

of 18) objectively and correctly reasoned about their final
selection based on the details provided by Table 4 (pros
and cons of the techniques) and Table 5 (evaluation of the
techniques). This result indicates that the provided details
on trade-offs and performance evaluation by CONSERVE
helped in assisting an objective decision-making process of
the monitoring techniques.

5.4.2. Post-Task Results

Figure 5 presents the answers of the participants on the
closed-ended questions of the post-task questionnaire. This
figure shows that the perceptions of the participants on the
ease of use, clarity, and usefulness of the framework are
positive (Q13-Q15). In fact, the majority of participants
agree that the framework is easy-to-use (83%), clear (78%)
and useful (94%). Moreover, this figure shows that 50.00%
of the participants consider the framework as essential for
performing the selection of container monitoring techniques.
In contrast, 50.00% of the participants state that they could
perform and complete the task without the help of CON-
SERVE (Q16). However, this 50.00% and the rest of partici-
pants estimate that performing the selection task requires the
same effort (5.55%), more effort (16.67%), and much more
effort (77.78%) without the help of CONSERVE (Q17).

The answers to the open-ended questions (Q18-Q22) of
the post-task questionnaire are analyzed using thematic anal-
ysis. The results are presented in the following paragraphs.

Benefits. According to the participants, there are three
main perceived benefits (b) of CONSERVE:

(bl1) It provides a systematic decision support for navigat-
ing through the applicable monitoring techniques for
the task at hand.

(b2) Itis a simple and easy to use framework for selecting
container monitoring techniques.

(b3) It supports an efficient selection by saving time and ef-
fort in matching the techniques with the requirements.

Applicability. CONSERVE is considered as a valuable
light-weight framework that can be easily adopted in prac-
tice without additional training. Moreover, the participants
perceived the potential applicability of the framework as
an essential means for understanding the features of the
monitoring techniques and supporting the selection thereof
in practice. A continuous support and maintenance of the
framework (e.g., by updating the considered techniques or
adding new ones) is perceived as an important step for
enduring and increasing the applicability of the framework
in practice.

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 19 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

Q13. The CONSERVE framework is easy to use.

mstrongly disagree Odisagree Oneutral Dagree Mstrongly agree
[5.55% | 11.11% [50.00% 33.34%
Q14. How clear (i.e., understandable) is the CONSERVE framework?
mextreamly unclear @slightly unclear @neither unclear nor clear @slightly clear ~ mvery clear
[555% | 16.67% | 33.34%
Q15. CONSERVE framework is useful in assisting the selection of container monitoring techniques.
mstrongly disagree Odisagree DOneutral Dagree ™ strongly agree
[5.55% | 38.89% 55.56%

Q16. Imagine you had to perform the task without the help of CONSERVE. Could you have completed the task anyway?

@no Dyes

50.00%

50.00%

Q17. Imagine you had to perform the task without the help of CONSERVE. Could you estimate the effort required to perform such task?

mmuch less effort Oless effort

5.55% | 16.67%

Othe same effort

omore effort @much more effort

77.78%

Figure 5: Evaluation: Results of Post-Task Questions 13-17

Challenges. The main perceived challenges are related
to the presentation and understandability of the framework
and the evaluation task. For instance, the used publication
references as identifiers of the techniques in the framework
is perceived as confusing. On this regard, it is suggested to
enhance the presentation of the framework by using identi-
fiers such as Tech 1, Tech 2, etc. The reported evaluations
in Table 5 are perceived to be somehow difficult to use for
comparing the techniques as not all the evaluations use the
same metrics. The lack of sufficient domain knowledge of
the participants who have a low experience and experience
in system security is considered as a challenge to understand
the framework and the evaluation task. Two participants
also reported that the understanding of the framework was
challenging at the beginning, but they were able to fully
understand it after reading the evaluation tasks.

Completeness. To complete the framework and assist
its understandability and applicability, it is suggested to
describe the use of the framework by means of examples
and flow diagrams. Moreover, a connection to other quality
attributes such as safety, maintainability, reusability, and
variability is considered as good to have. To better assist
the selection process, it is suggested to add more details
about the metrics used in the evaluation of the monitoring
techniques such as the number of evaluated objects, domain
of evaluation, performance costs, and false positive rates.

Suggestions. Itis suggested to create a web application or
GUI for an interactive presentation of the framework. This
would indeed provide a means for filtering, grouping, and

highlighting the techniques with a click of a button, which
in turn would simplify the comparison and selection process.

6. Threats to Validity

Our study is subject to threats to its construct validity,
internal validity, external validity, and reliability.

6.1. Construct Validity

Construct validity refers to how well captured data and
measures represent what researchers intended them to rep-
resent in the study in question. The literature review is
conducted by involving one search database, namely Sco-
pus, which is claimed to be one of the largest databases
of abstracts and citations Keele et al. (2007). Still, using
one database in the literature review raises the risk of con-
sidering a non-representative set of relevant studies. To
complement the review and cover more relevant work, we
use the snowballing search approach. In particular, Google
Scholar is used to perform the snowballing search in order
to avoid publisher bias (e.g., searching in one publisher’s
database) Wohlin (2014).

Discretizing the measurement of continuous properties,
such as the level of expertise and experience of the partici-
pants in systems security, could have lead to a threat to con-
struct validity. This threat is investigated for balanced Likert
scales and identified as not compromising the measures Ray
(1982).

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 20 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

6.2. Internal Validity

Internal validity concerns efforts made to ensure that
possible confounding factors are identified and alleviated.
The inclusion and exclusion of studies in the literature re-
view is done by one researcher. Hence, there is a threat of
subjectivity (i.e., literature review reliability). To mitigate
this threat, a second researcher performed a quality control
of the review. Using the same search terms, a search on
Scopus database is performed and 15 studies are randomly
selected which account to approximately 15% of the total
number of the search results. The inclusion as well as ex-
clusion criteria and the snowballing search approach are
performed on these studies. To assess the reliability, we cal-
culate the inter-rater agreement coefficient (Cohen’s kappa
Cohen (1960)) between the two researchers (i.e., raters). We
obtain a kappa value of 0.75 which indicates a substantial
inter-rater agreement according to Landis et al. Landis and
Koch (1977). The difference in the considered studies (one
study not included by the first researcher) is discussed and
resulted in a clarification of the inclusion and exclusion
criteria.

The level of expertise and experience in virtualization
and systems security of the participants might influence the
understanding of the framework and, thus, the evaluation
thereof. We contacted participants from both academia (PhD
students and researchers) and industry (e.g., systems security
experts) to make sure that our participants have different
levels (i.e., high, medium, and low) of expertise and experi-
ence. The main reason is that we wanted to increase realism,
since not all developers working in industry have a high
expertise and experience in virtualization and systems secu-
rity. Furthermore, considering people with different levels
of expertise and experience helps in obtaining diverse and
significant feedback—that might not otherwise manifest by
involving only experts and highly experienced people—on
the applicability, usefulness, and understand-ability of the
framework.

The presentation of the framework (Figure 3 and the
three complementing tables) might have influenced the un-
derstanding and evaluation thereof. A pilot study was con-
ducted to ensure that the framework is clear and well pre-
sented. Moreover, the perceptions on the ease of use and
clarity were positive, thus we consider the effect of this issue
as minimal.

Based on the publication type (e.g., conference vs. jour-
nal), venue name, publication date, and number of current
citations, we notice that not all the included studies are
published in well-known venues. Moreover, four out of the
fifteen included studies still have a low number of citations.
This might be considered as a threat to the credibility of these
studies. The four studies that have a low number of citations
are recently published, and this might be the reason of such
lack of citations. We think that the implementation and
further evaluation of the monitoring techniques in practice
would contribute in mitigating this threat.

6.3. External Validity

External validity concerns the extent to which the results
of a study can be generalized. The clarity, size, duration, and
complexity of the task, including the questions, used for the
evaluation of the framework might differ from real-world
conditions and limit the generalizability of the evaluation
results. To address this threat, we aim and call for replication.
Furthermore, the participants involved in the evaluation of
the framework are selected based on contacts and collabo-
rators, i.e., through convenience sample. While the number
of involved participants might be considered as small, we
do not consider this as a major threat since the aim of the
evaluation is to get a preliminary qualitative feedback and
not to generalize over a population of actors.

6.4. Reliability

Reliability concerns the extent to which the operations
of a study can be repeated by other researchers, achieving
the same results. We thoroughly detail the approach that
we adopted to perform the literature review. Moreover, we
detail the evaluation process of the framework by reporting
the introduction to the context and framework given to the
participants, characteristics of the participants, evaluation
task, and post-task questions. These details should enable
reproduction of our study under comparable contexts.

7. Conclusion

Container-based virtualization is gaining popularity in
different domains. Different techniques for monitoring con-
tainers security are proposed. However, there are no guide-
lines supporting the selection of suitable container monitor-
ing techniques for the tasks at hand.

We review the literature to identify relevant techniques
for monitoring container-based virtualization environments
with the goal to provide a comprehensive overview of these
techniques. We further categorize the identified techniques
to help developers understand their purpose, technical char-
acteristics, applicability, and effectiveness.

As aresult, we present CONSERVE, a multi-dimensional
decision support framework that can be applied in different
domains. An evaluation of the framework by a mix of
eighteen researchers and practitioners shows a high level
of interest, and points out to potential benefits. Mainly,
the majority of the participants in the evaluation agree
that the framework is easy to use (83%), clear (78%),
and useful (94%). Moreover, all the participants agree that
the framework supports an efficient selection of container
monitoring techniques by saving time and effort in matching
the techniques with the tasks at hand.

7.1. Implications to Research and Practice

The knowledge that the framework provides, including
the characteristics, functionalities, pros, and cons of the con-
tainer monitoring techniques, could be used by researchers
to enhance the performance of the techniques and/or design
more effective solutions. This can be done by e.g., inves-
tigating approaches that would significantly mitigate the

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 21 of 24

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

current cons of the techniques or by combining a number of
techniques to achieve multiple monitoring-layers and, thus,
improve the security of the container-based virtualization
environment.

A combination of threat-based risk analysis and the
framework could be used by practitioners to make informed
decisions about the required monitoring techniques with
respect to the identified threats to the container-based vir-
tualization environment and the associated level of risk.

Given that the framework considers techniques used
in different domains and provides clear insight into the
trade-offs and performance evaluations of each technique,
the effectiveness of the framework can be potentially more
significant in domains such as automotive in which cyber-
security and container-based technology are relatively new,
and performance requirements are critical. The framework
enables practitioners in such domains to identify monitor-
ing techniques used in other domains, and select the most
suitable approach based on the available resources and the
expected performance requirements.

7.2. Future Work

To enhance the current version of the framework, we will
address the comments that we received via the evaluation.
Moreover, to complement the conducted evaluation and get
further insights, we plan to evaluate the framework using
more scenarios and involving more participants.

Furthermore, we plan to provide an interactive presenta-
tion of CONSERVE to assist the exploration and selection
process of container monitoring techniques. We also plan to
continuously maintain and update the framework to reflect
eventual evolution of the considered monitoring techniques
as well as include newly developed techniques.

Acknowledgment

We would like to thank the participants who took a part
in the evaluation of CONSERVE. This research was partially
supported by the Swedish VINNOVA FFI project CyReV:
Cyber Resilience for Vehicles with diary numbers: 2018-
05013 (1st phase) and 2019-03071 (2nd phase).

References

Abed, A.S., Azab, M., Clancy, C., Kashkoush, M.S., 2020. Resilient
intrusion detection system for cloud containers. International Journal
of Communication Networks and Distributed Systems 24, 1-22.

Abed, A.S., Clancy, C., Levy, D.S., 2015. Intrusion detection system
for applications using Linux containers, in: International Workshop on
Security and Trust Management, Springer. pp. 123-135.

Ackley, D.H., Hinton, G.E., Sejnowski, T.J., 1985. A learning algorithm
for boltzmann machines. Cognitive science 9, 147-169.

Agache, A., Brooker, M., Iordache, A., Liguori, A., Neugebauer, R., Pi-
wonka, P., Popa, D.M., 2020. Firecracker: Lightweight virtualization
for serverless applications, in: 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), USENIX Associa-
tion, Santa Clara, CA. pp. 419-434. URL: https://www.usenix.org/
conference/nsdi2@/presentation/agache.

Agarwal, R., Srikant, R., et al., 1994. Fast algorithms for mining association
rules, in: Proc. of the 20th VLDB Conference, pp. 487-499.

Apache, accessed January 2021. Apache hadoop. http://hadoop.apache.
org/.

AppArmor, accessed Janunary 2021. A linux application security system.
https://gitlab.com/apparmor/apparmor/-/wikis/home.

Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C.,
Lind, J., Muthukumaran, D., O’Keeffe, D., Stillwell, M.L., Goltzsche,
D., Eyers, D., Kapitza, R., Pietzuch, P., Fetzer, C., 2016. SCONE:
Secure linux containers with Intel SGX, in: Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementa-
tion, USENIX Association, USA. p. 689-703.

Bélair, M., Laniepce, S., Menaud, J.M., 2019. Leveraging kernel security
mechanisms to improve container security: A survey, in: Proceedings
of the 14th International Conference on Availability, Reliability and
Security, Association for Computing Machinery, New York, NY, USA.
URL: https://doi.org/10.1145/3339252.3340502, d0i:10.1145/3339252.
3340502.

Berger, C., Nguyen, B., Benderius, O., 2017. Containerized development
and microservices for self-driving vehicles: experiences & best prac-
tices, in: 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW), IEEE. pp. 7-12.

Bernstein, D., 2014. Containers and cloud: From Ixc to docker to kuber-
netes. IEEE Cloud Computing 1, 81-84. doi:10.1109/MCC.2014.51.

Boyatzis, R.E., 1998. Transforming qualitative information: Thematic
analysis and code development. sage.

cAdvisor, accessed December 2020. A software for analyzing and exposing
resource usage and performance data from running containers. https:
//github.com/google/cadvisor.

Casalicchio, E., Iannucci, S., 2020. The state-of-the-art in
container technologies: Application, orchestration and security.
Concurrency and Computation: Practice and Experience
32, e5668. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpe. 5668, doi:https://doi.org/10.1002/cpe.5668,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5668.
€5668 cpe.5668.

Chandramouli, R., Chandramouli, R., 2017. Security assurance require-
ments for linux application container deployments. US Department of
Commerce, National Institute of Standards and Technology.

Chen, J., Feng, Z., Wen, J.Y., Liu, B., Sha, L., 2019. A container-based
DoS attack-resilient control framework for real-time UAV systems, in:
2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), IEEE. pp. 1222-1227.

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational
and Psychological Measurement 20, 37-46. URL: https://doi.
org/10.1177/001316446002000104, doi:10.1177/001316446002000104,
arXiv:https://doi.org/10.1177/001316446002000104.

Combe, T., Martin, A., Di Pietro, R., 2016. To docker or not to docker: A
security perspective. IEEE Cloud Computing 3, 54-62.

containers, L., accessed June 2021. Infrastructure for container projects.
https://linuxcontainers.org/.

Creswell, J.W., Creswell, J.D., 2017. Research design: Qualitative, quanti-
tative, and mixed methods approaches. Sage publications.

CRIU, accessed Janunary 2021. A checkpoint/restore functionality for
linux. https://criu.org/Main_Page.

De Benedictis, M., Lioy, A., 2019. Integrity verification of docker contain-
ers for a lightweight cloud environment. Future Generation Computer
Systems 97, 236-246.

Docker, accessed December 2020. A lightweight, standalone, executable
package of software that includes everything needed to run an applica-
tion. https://www.docker.com.

Du, Q., Xie, T., He, Y., 2018. Anomaly detection and diagnosis for
container-based microservices with performance monitoring, in: In-
ternational Conference on Algorithms and Architectures for Parallel
Processing, Springer. pp. 560-572.

Elsevier, accessed Janurary 2021. Scopus — expertly curated abstract &
citation database. https://www.elsevier.com/solutions/scopus.

Falco, accessed December 2020. A behavioral activity monitoring with
container support. https://github.com/draios/oss-falco.

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 22 of 24

https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
http://hadoop.apache.org/
http://hadoop.apache.org/
https://gitlab.com/apparmor/apparmor/-/wikis/home
https://doi.org/10.1145/3339252.3340502
http://dx.doi.org/10.1145/3339252.3340502
http://dx.doi.org/10.1145/3339252.3340502
http://dx.doi.org/10.1109/MCC.2014.51
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5668
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5668
http://dx.doi.org/https://doi.org/10.1002/cpe.5668
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5668
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1177/001316446002000104
http://arxiv.org/abs/https://doi.org/10.1177/001316446002000104
https://linuxcontainers.org/
https://criu.org/Main_Page
https://www.docker.com
https://www.elsevier.com/solutions/scopus
https://github.com/draios/oss-falco

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A., 1996. A sense
of self for unix processes, in: Proceedings 1996 IEEE Symposium on
Security and Privacy, IEEE. pp. 120-128.

Fourati, M.H., Marzouk, S., Drira, K., Jmaiel, M., 2019. Dockeranalyzer:
Towards fine grained resource elasticity for microservices-based appli-
cations deployed with docker, in: 2019 20th International Conference
on Parallel and Distributed Computing, Applications and Technologies
(PDCAT), IEEE. pp. 220-225.

Gantikow, H., Reich, C., Knahl, M., Clarke, N.L., 2019. Rule-based security
monitoring of containerized workloads, in: CLOSER, pp. 543-550.
Gantikow, H., Zohner, T., Reich, C., 2020. Container anomaly detection
using neural networks analyzing system calls, in: 2020 28th Euromicro
International Conference on Parallel, Distributed and Network-Based

Processing (PDP), IEEE. pp. 408-412.

Garcia-Teodoro, P., Diaz-Verdejo, J., Macia-Fernandez, G., Vazquez, E.,
2009. Anomaly-based network intrusion detection: Techniques, systems
and challenges. computers & security 28, 18-28.

Haldar, V., Chandra, D., Franz, M., 2004. Semantic remote attestation: a
virtual machine directed approach to trusted computing, in: USENIX
Virtual Machine Research and Technology Symposium.

Heapster, accessed December 2020. A software for container clus-
ter monitoring and performance analysis. https://github.com/
kubernetes-retired/heapster

Howard, M., Lipner, S., 2006. The security development lifecycle. vol-
ume 8. Microsoft Press Redmond.

Huang, D., Wu, H., 2018. Chapter 2 - virtualization, in: Huang,
D., Wu, H. (Eds.), Mobile Cloud Computing. Morgan Kaufmann,
pp. 31 - 64 URL: http://www.sciencedirect.com/science/
article/pii/B978012809641300003X, doi:https://doi.org/10.1016/
B978-0-12-809641-3.00003-X.

InfluxDB, accessed Janunary 2021. A platform for building and operating
time series applications. https://www.influxdata.com.

Kamthania, S., 2019. A novel deep learning rbm based algorithm for
securing containers, in: 2019 IEEE International WIE Conference on
Electrical and Computer Engineering (WIECON-ECE), IEEE. pp. 1-7.

Keele, S., et al., 2007. Guidelines for performing systematic literature
reviews in software engineering. Technical Report. Citeseer.

Khalimov, A., Benahmed, S., Hussain, R., Kazmi, S.A., Oracevic, A., Hus-
sain, F., Ahmad, F., Kerrache, C.A., 2019. Container-based sandboxes
for malware analysis: A compromise worth considering, in: Proceedings
of the 12th IEEE/ACM International Conference on Utility and Cloud
Computing, pp. 219-227.

Kubernetes, accessed December 2020. An open-source system for automat-
ing deployment, scaling, and management of containerized applications.
https://kubernetes.io.

Landis, J.R., Koch, G.G., 1977. The measurement of observer agreement
for categorical data. Biometrics 33, 159—174. URL: http://waw. jstor.
org/stable/2529310

Laskov, P., Diissel, P., Schifer, C., Rieck, K., 2005. Learning intrusion
detection: supervised or unsupervised?, in: International Conference on
Image Analysis and Processing, Springer. pp. 50-57.

Lei, L., Sun, J., Sun, K., Shenefiel, C., Ma, R., Wang, Y., Li, Q., 2017.
Speaker: Split-phase execution of application containers, in: Interna-
tional Conference on Detection of Intrusions and Malware, and Vulner-
ability Assessment, Springer. pp. 230-251.

Li, W, Xia, Y., Lu, L., Chen, H., Zang, B., 2019. TEEv: Virtualizing
trusted execution environments on mobile platforms, in: Proceedings of
the 15th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, Association for Computing Machinery, New
York, NY, USA. p. 2-16. URL: https://doi.org/10.1145/3313808.
3313810, doi:10.1145/3313808.3313810.

Lunt, T.F.,, Jagannathan, R., Lee, R., Whitehurst, A., Listgarten, S., 1989.
Knowledge based intrusion detection, in: Proceedings of the Annual AI
Systems in Government Conference, Washington, DC.

Lwakatare, L.E., Karvonen, T., Sauvola, T., Kuvaja, P., Olsson, H.H.,
Bosch, J., Oivo, M., 2016. Towards devops in the embedded systems
domain: Why is it so hard?, in: 2016 49th hawaii international conference
on system sciences (hicss), IEEE. pp. 5437-5446.

Martin, A., Raponi, S., Combe, T., Di Pietro, R., 2018. Docker ecosystem—
vulnerability analysis. Computer Communications 122, 30-43.

Mattetti, M., Shulman-Peleg, A., Allouche, Y., Corradi, A., Dolev, S.,
Foschini, L., 2015. Securing the infrastructure and the workloads of
Linux containers, in: 2015 IEEE Conference on Communications and
Network Security (CNS), IEEE. pp. 559-567.

Merkel, D., 2014. Docker: lightweight linux containers for consistent
development and deployment. Linux journal 2014, 2.

Morabito, R., 2017. Virtualization on internet of things edge devices
with container technologies: a performance evaluation. IEEE Access
5, 8835-8850.

Morabito, R., Petrolo, R., Loscri, V., Mitton, N., Ruggeri, G., Molinaro,
A., 2017. Lightweight virtualization as enabling technology for future
smart cars, in: 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), IEEE. pp. 1238-1245.

OCI, accessed January 2021. Open container initiative.
opencontainers.org/.

OpenAttestation, accessed Janunary 2021. An open source project pro-
viding a sdk for managing host integrity verification. https://wiki.
openstack.org/wiki/OpenAttestation.

Pahl, C., 2015. Containerization and the paas cloud.
Computing 2, 24-31.

Pham, C., Estrada, Z., Cao, P., Kalbarczyk, Z., Iyer, R.K., 2014. Reliability
and security monitoring of virtual machines using hardware architectural
invariants, in: 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pp. 13-24. doi:10.1109/DSN.2014.
19.

Pinto, S., Santos, N., 2019. Demystifying ARM TrustZone: A comprehen-
sive survey. ACM Comput. Surv. 51. URL: https://doi.org/10.1145/
3291047, doi:10.1145/3291047.

Randazzo, A., Tinnirello, I, 2019. Kata containers: An emerging ar-
chitecture for enabling mec services in fast and secure way, in: Sixth
International Conference on Internet of Things: Systems, Management
and Security (IOTSMS), pp. 209-214. doi:10.1109/I0TSMS48152.2019.
8939164.

Ray, J.J., 1982. The construct validity of balanced likert scales. The Journal
of Social Psychology 118, 141-142.

Rodriguez, P., Haghighatkhah, A., Lwakatare, L.E., Teppola, S., Suoma-
lainen, T., Eskeli, J., Karvonen, T., Kuvaja, P., Verner, J.M., Oivo,
M., 2017. Continuous deployment of software intensive products and
services: A systematic mapping study. Journal of Systems and Software
123,263-291.

Sailer, R., Zhang, X., Jaeger, T., Van Doorn, L., 2004. Design and
implementation of a tcg-based integrity measurement architecture., in:
USENIX Security symposium, pp. 223-238.

Sayed, M.M., Azab, M., 2019. The time machine: Smart operation-
resilience in presence of attacks and failures, in: 2019 IEEE 10th An-
nual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), IEEE. pp. 0127-0132.

SELinux, accessed December 2020. A flexible mandatory access control
(mac) for linux. https://github.com/SELinuxProject.

Sha, L., 2001. Using simplicity to control complexity. IEEE Software 18,
20-28.

Soltesz, S., Potzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L., 2007.
Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors, in: Proceedings of the 2Nd ACM
SIGOPS/EuroSys european conference on computer systems 2007, pp.
275-287.

Souppaya, M., Morello, J., Scarfone, K., 2017. NIST Special Publication
800-19 — Application Container Security Guide. Technical Report.
National Institute of Standards and Technology (NIST). doi:10.6028/
NIST.SP.800-190.

Srinivasan, S., Kumar, A., Mahajan, M., Sitaram, D., Gupta, S., 2018.
Probabilistic real-time intrusion detection system for docker containers,
in: International Symposium on Security in Computing and Communi-
cation, Springer. pp. 336-347.

Sultan, S., Ahmad, I., Dimitriou, T., 2019. Container security: Issues,
challenges, and the road ahead. IEEE Access 7, 52976-52996.

https://

IEEE Cloud

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 23 of 24

https://github.com/kubernetes-retired/heapster
https://github.com/kubernetes-retired/heapster
http://www.sciencedirect.com/science/article/pii/B978012809641300003X
http://www.sciencedirect.com/science/article/pii/B978012809641300003X
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-809641-3.00003-X
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-809641-3.00003-X
https://www.influxdata.com
https://kubernetes.io
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://doi.org/10.1145/3313808.3313810
https://doi.org/10.1145/3313808.3313810
http://dx.doi.org/10.1145/3313808.3313810
https://opencontainers.org/
https://opencontainers.org/
https://wiki.openstack.org/wiki/OpenAttestation
https://wiki.openstack.org/wiki/OpenAttestation
http://dx.doi.org/10.1109/DSN.2014.19
http://dx.doi.org/10.1109/DSN.2014.19
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3291047
http://dx.doi.org/10.1145/3291047
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939164
http://dx.doi.org/10.1109/IOTSMS48152.2019.8939164
https://github.com/SELinuxProject
http://dx.doi.org/10.6028/NIST.SP.800-190
http://dx.doi.org/10.6028/NIST.SP.800-190

CONSERVE: A Framework for the Selection of Techniques for Monitoring Containers Security

Sysdig, accessed December 2020. A universal system visibility tool with
native support for containers. https://github.com/draios/sysdig.

SystemTap, accessed December 2020. A free software (GPL) infrastructure
to simplify the gathering of information about the running linux system.
https://sourceware.org/systemtap.

Wieringa, R.J., 2014. Design science methodology for information systems
and software engineering. Springer.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature
studies and a replication in software engineering, in: Proceedings of the
18th international conference on evaluation and assessment in software
engineering, pp. 1-10.

Yun, H., Yao, G., Pellizzoni, R., Caccamo, M., Sha, L., 2013. Mem-
guard: Memory bandwidth reservation system for efficient performance
isolation in multi-core platforms, in: 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), IEEE.
pp. 55-64.

Zou, Z., Xie, Y., Huang, K., Xu, G., Feng, D., Long, D., 2019. A docker
container anomaly monitoring system based on optimized isolation
forest. IEEE Transactions on Cloud Computing .

Rodi Jolak is a post-doctoral researcher in
software engineering at the joint Department
of Computer Science and Engineering between
Chalmers and University of Gothenburg in Swe-
den. His research activities focus on software
engineering, software architectures, software de-
sign, human-computer interfaces, and security.
Rodi received a Ph.D. degree in software engi-
neering from the University of Gothenburg in
2020. He also practiced his role as a software
engineer in industry for more than two years. See
http://www.rodijolak.com for more.

Thomas Rosenstatter is a researcher in the De-
partment of Digital Systems at RISE Research
Institutes of Sweden and received a Ph.D. degree
in Computer Science and Engineering at the
Chalmers University of Technology in Sweden.
His research focuses on cybersecurity in trans-
port and the design and development of secure
and resilient cyber-physical systems.

Mazen Mohamad received his master’s degree
in software engineering in 2016 from Chalmers
University of technology in Sweden, and is cur-
rently working towards a PhD in Computer Sci-
ence and Engineering at the Software Engineer-
ing division of the Computer Science and En-
gineering department of Chalmers University of
Technology and University of Gothenburg. His
research interests include security assurance of
cyber-physical systems.

Kim Strandberg is a senior security engineer
at the Department of Research and Development
at Volvo Cars and an industrial Ph.D. student in
the Department of Computer Science and Engi-
neering at Chalmers University of Technology,
Sweden. He has two BSc. and two MSc. within
the area of computer science and engineering.
He has been working as an engineer within the
IT area for 16 years and with automotive cyber
security for about six years. His main research

field is automotive cyber security, with an em-
phasis on secure and resilient automotive system
design and development.

Behrooz Sangchoolie is a researcher in the
Department of Electrification and Reliability at
RISE Research Institutes of Sweden. He is the
technical coordinator of National and European
research projects in the area of dependable and
secure computing and has served on many pro-
gram committees for conferences and workshops
in the area. His current research interests include
the use of fault and attack injection experiments
for dependability and security assessment of
computer systems as well as to conduct interplay
analyses between non-functional requirements
such as safety and security.

Nasser Nowdehi is an automotive cybersecurity
technical specialist in the department of Re-
search and Development at Volvo Cars, Sweden.
He has a Ph.D. degree in automotive cyberse-
curity from Chalmers University of Technology
and a MSc. degree in computer systems and
networks (specialized in cybersecurity) from the
same university. His main research interests in-
clude intrusion detection systems, V2X security,
and cyber resilient systems.

Riccardo Scandariato (PhD 2004) is a full
professor and the head of the Institute of Soft-
ware Security at the Hamburg University of
Technology (TUHH), in Germany. His work
focuses on the design of secure and privacy-
friendly applications, particularly in the realms
of micro-services, IoT ecosystems, and cyber-
physical systems.

R. Jolak, T. Rosenstatter, M. Mohamad et al.: Preprint submitted to Elsevier

Page 24 of 24

https://github.com/draios/sysdig
https://sourceware.org/systemtap
http://www.rodijolak.com

